混合运算的教案通用7篇

时间:2024-07-04 09:28:42 分类:工作计划

编写教案是教师认真思考教学内容、方法和手段的重要方式,教案是教师们为了满足学生学习需求而精心设计的教学指导,以下是尚华范文网小编精心为您推荐的混合运算的教案通用7篇,供大家参考。

混合运算的教案通用7篇

混合运算的教案篇1

教学内容

人教版教科书第59页例1、例2及做一做,练习十五第1~5题.

素质教育目标

(一)知识与技能

通过学习,掌握分数四则混合计算的运算顺序,会正确进行计算.

(二)过程与方法

培养学生知识的迁移类推及计算能力.

(三)情感、态度与价值观

通过数学活动,激发学生学习数学的兴趣及运用数学知识的能力.

教学重点

掌握分数四则混合计算的运算顺序。

教学难点

掌握分数四则混合计算的运算顺序,会正确进行计算

教具准备

多媒体课件一套.

学法引导

引导学生运用已有经验,进行知识类推迁移,通过体验,掌握计算方法。

教学过程

一、设疑导入 出示一组算式.(课件出示.)

7+426 + 480-(32+324)

[( + ) ]20-[4-( - )]

观察以上6个算式,讨论.

1.这些算式有什么共同之处?(都是四则混合运算式题.)

2.根据算式的特点,可以分为哪几类?

二、新课(小组合作,研讨新课.)

第2个问题可以先让学生小组讨论,然后派代表汇报.

学生的分类大致有以下几种:

1.依据计算步骤分为:

两步计算的有:

三步计算的有:

2.按算式中数的特征可以分为:

属整数四则混合运算的'有:

属分数四则混合运算的有:

3.教师重点依据学生的第2种分类,先让学生说说分数四则混合运算的顺序.再具体说出下面各题应先算什么,再算什么.

4.出示下面一组算式.

(1)让学生仿照整数四则混合运算的顺序,分小组试着说出上面4道分数四则混合运算的顺序,分组进行汇报.

(2)学生汇报运算顺序时,仿照上面题的方法用红线标出运算步骤.

(3)让学生分小组试做,每人试做两题(一题有括号,一题无括号的).

(4)请其中一个小组派代表汇报每题的运算过程及结果,其他组进行核对.

5.让学生把整数四则混合运算式题与分数四则混合运算式题进行对比,找出它们的共同点,进而总结出分数四则混合运算的运算顺序.

三、反馈练习

1.先说出下面各题的运算顺序,再计算.

+32-23- +

2.请你用 、1、 、 、 、 等数编几道分数四则混合运算式题.

(1)小组协助完成.

(2)每个小组成员选2题,先说运算顺序,再计算.

(3)各小组汇报编题及计算情况,对编得合理,计算准确的小组给予奖励.

四、巩固练习

1.练习十五第4题.独立做,集体订正.

2.课堂作业:练习十五第5题.

混合运算的教案篇2

教学目标:

1、使学生结合解决实际问题的过程,掌握分数四则混合运算的运算顺序,能按运算顺序正确计算;了解整数运算律在分数计算中同样适用,并能运用运算律进行有关分数的简便计算。

2、使学生在分数四则混合运算的过程中,进一步提高运算能力,能灵活运用运算律和运算性质,选择简便合理的运算方法;培养观察、比较和概括等思维能力。

3、使学生在数学学习过程中,进一步体会数学学习的严谨性和数学结论的科学性,养成认真计算、自觉检验、有错即改的良好学习习惯。

教学重点:

分数四则混合运算的运算顺序。

教学难点:

运用运算律和运算性质进行简便计算。

教学过程:

一、引入新课

1、口算练习。

直接写出得数。集体交流,选择几题让学生说说算法。

2、出示例1

引导:同学们,这两个物品你认识吗?(中国结)你从主题图中知道了哪些条件,要求什么问题?能列出综合算式吗?学生独立完成。集体交流,让说说是怎么列式的,并且是怎样想的。

板书算式:2/5×18+3/5×18(2/5+3/5)×18

3、揭示:这两个含有分数的算式既有乘法又有加法,这就是我们今天要学习的分数四则混合运算。(板书课题)

二、学习新知

1、尝试计算,认识运算顺序

引导:这两道算式各是先求的`什么?你能计算出得数吗?

学生独立计算,指名两人板演

交流:2/5×18+3/5×18,你先算的什么运算?乘法算出的结果表示什么?

说明:先算小中国结和大中国结各用彩绳多少米,也就是先算这个算式中的乘法,这两步乘法可以同时计算脱式。

提问:(2/5+3/5)×18先算什么呢?先算的是哪个数量?

说明:先算两种中国结各做一个要用彩绳多少米,也就是先算括号里的

2、小结运算顺序。

提问:通过这两题的计算,你认为分数四则混合运算可以怎么算呢?

小结:分数四则混合运算的运算顺序和以前学过的整数运算顺序相同这里有乘法和加法,先算乘法,再算加法;有小括号的先算小括号里的。

3、明确运算律。

提问:比较解决例1的两种不同解法,这两种解法之间有什么联系?

如果让你选择算法,你喜欢哪种算法?为什么?

通过讨论让学生发现:整数运算律同样适用于分数的运算。根据运算律,可以使一些计算简便。

三、巩固练习

1、做“练一练”第1题。

提问:这两题的运算顺序是怎样的?同桌相互说一说。

提问:在进行分数四则混合运算时,你认为要注意些什么?

指出:计算分数四则混合运算,要先弄清楚先算什么,再算什么;例如第一小题,分数乘除法连在一起,可以把除法转化为乘法,一次约分,同时计算再如第二小题,分数连加时可以同时通分

2、做“练一练”第2题

学生独立计算,指名板演。集体交流,说说哪里用了简便算法,分别是怎样想的。小结:简便运算主要应观察算式的特点,看能不能运用运算律或运算性质使计算简便。有些题目不能直接进行简便计算,要先算一步或几步才能应用运算律或规律简便计算,因此在计算过程中要随时注意观察算式的特点,思考能不能用简便计算。

3、做练习十二第3题。

让学生独立练习,指名四人板演。

交流:每道题是哪里用了简便计算,依据是什么?

四、全课总结

提问:这节课我们学习了分数四则混合运算,你有哪些收获?你觉得在计算分数四则混合运算时,有什么需要提醒大家注意的?

五、布置作业。

混合运算的教案篇3

教学目标

使学生掌握分数除法和加、减法混合运算的运算顺序,能正确进行运算,并根据具体情况合理计算,提高学生四则计算的能力。

教学重难点

能正确进行运算,并根据具体情况合理计算,提高学生四则计算的能力。

教学准备

教学过程设计

教学内容

师生活动

备注

一、 复习引新

二、教学新课

三、课堂

四、作业

1、说说下面各题的运算顺序

8÷2+9÷318÷(12-3)

2、将上题中的.数据改为分数,问运算顺序怎样?

3、问:分数除法和加、减法的混合运算顺序和整数除法和加、减法的混合运算顺序是否一样?

1、出示例1

让学生自己独立完成,一人上黑板,集体说解题顺序。

2、组织练习

做“练一练”第1题

3、教学例2

出示例2

问:先算什么,再算什么?

学生口答、老师边板书边提问。

指出:这道题在把除法改为乘法后,可以应用乘法分配律使计算简便。所以我们在混合运算时,每一步计算时,都要注意观察算式的特点,能用简便算法的一般用简便算法。

4、组织练习

做“练一练”第2题

问:应用了什么定律,要怎样计算?

指出:在除法转化成乘法后,要注意有一些题可以用乘法的运算定律使计算简便。

这节课学习了分数除法和加、减法的混合运算。谁来说一说它的运算顺序怎样?运算时要注意什么?

练习十一第1~3题的第一行,第4、5题

课后感受

本节课的重点放在简便运算上,基本上同学们还是掌握的不错。

混合运算的教案篇4

教学内容:

教科书第37页。

教学目标:

让学生掌握含有小括号的三步混合运算的运算顺序,并能正确地进行计算。

教学重点:

掌握含有小括号的混合运算顺序。

教学过程:

一、复习

老师板书信息,提醒学生根据“我们组比你们两组的总人数多6人”来列式。 随学生回答板书:18+18×2+6

二、教学小括号的混合运算

1、指板书“18+18×2+6”问:谁能给这个算式加小括号,改变它原来的运算顺序。

2、学生练习:300-(120+25×4)

3、同桌分别练习第2题的两组题,练习完后互相检查。全班交流。

三、巩固练习

1.做“想想做做”第1题。

独立做题,展示部分学生的答案,共同校对。

2.做“想想做做”第2题。

让学生在自己的本子上做一做,并知名扮演。

提问:比较每组题的三道算式,你能发现它们有什么联系,有什么不同吗?

小结:每组三题都是含有小括号的试题,都应先算小括号里面的。其中每组第2、3题数相同,运算符号也相同,都有小括号,而小括号的位置不同,它们的运算顺序不同,计算结果也就不同了,可见小括号在算式中起了多么大的作用。

3.做“想想做做”第4题。

观察情境图,指名说出题目的已知条件和所求问题。

谈话;如果我用这样长的线段表示上午运进的140千克,谁能画出表示下午运进的千克数的线段?让学生把线段图补画完整,并表示出所求的问题。

学生各自列式计算

提问:做这道题时你是怎样想的?

4、课堂作业:完成“想想做做”第3、5题。

混合运算的教案篇5

教学内容

六年级北师大版分数混合运算教案

教学目标:

1、解决有关分数乘除混合运算的具体问题,会想策略明晰数量关系。

2、结合具体情境体会分数混合运算的顺序与整数混合运算一样,会正确计算分数混合运算,并在计算中养成认真的良好习惯。

3、能解决有关分数混合运算的简单实际问题,发展分析问题和解决问题的能力。

教学重点:

画图分析数量关系,解决(分数乘除法)简单实际问题。

教学过程:

一、出示情境图、独立解决。

师:请看情境图,你是怎么想的`呢?独立思考1分钟,将你思考的过程写在草稿本上(2分钟),开始。

二、小组讨论、明晰思路。

师:在小组内交流自已的想法,一会在全班分享。

1、你们组的解题思路是什么?

2、你们组还有什么困惑?

3、最想给大家分享的感悟是什么?

三、全班交流、解决问题。

1.对于分数混合运算的顺序你有什么想说的?计算时有没有什么好方法?

2、最想给大家分享的感悟是什么,进行本节课的反思与评价。

四、完成书上练习,巩固检测

混合运算的教案篇6

教学目标:

1、结合具体情境,掌握分数四则混合运算的顺序,能正确地进行计算。

2、能运用所学知识解决简单的实际问题,提高综合解题的能力。

3、培养学生认真审题、准确计算的好习惯。

教学重难点:

重点:

掌握分数四则混合运算的顺序。

难点:

正确计算分数四则混合运算。

教学过程:

一、导入

1、笔算下面各题。

24÷4 16×5-37 46 50×[(900-90)÷9]

2、计算下面各题。

二、教学实施

1、例3。

(1)老师整理情境中的信息。

(2)学生明确题意。

(3)学生分析题目并解答

(4)老师提问:可以列综合算式吗?小组讨论并汇报,如何列综合算式。

(5)分析运算顺序。

师问:这两道算式里分别含有几级运算?应该先算什么,再算什么?

2、巩固练习,完成教材第33页“做一做”。

3、变式练习。

分数、小数混合运算:

三、课堂作业设计

1、填空。

(1)20米是()米的.五分之二,20米的五分之二是()米,20米的五分之二是56米的。

(2)()吨的四分之三比8吨还多1吨。

2、计算。

(1)完成教材第32页“做一做”的第1、2、3题。

(2)完成教材第34页;练习七的第1—8题。

四、课堂作业设计

1、在里填上运算符号,在()里填上适当的数。

2、口算。

混合运算的教案篇7

本单元在分数四则计算和简单应用的基础上,主要教学分数四则混合运算和稍复杂的求一个数的几分之几是多少的实际问题。这部分内容是五年级教学的分数知识的综合、提高和总结,对掌握和应用分数知识有很大的影响。在内容的编排上有以下几个特点。

第一,教学计算,例题的内容容量很大。例1教学分数四则混合运算,包括按运算顺序计算和应用运算律简便计算。在这道例题中,既要把整数四则混合运算的运算顺序迁移过来,还要理解整数的运算律在分数中同样适用。把按运算顺序计算和应用运算律简便计算有机结合起来,把口算和笔算结合起来,组建四则混合运算的认知结构,有益于理解和掌握计算知识,形成实实在在的计算能力。

第二,教学解决实际问题,例题的编排细致。本单元解答稍复杂的求一个数的几分之几是多少的实际问题,一般列综合式计算。提出这个要求有两点原因:首先是前面刚教学了四则混合运算,学生具备列综合算式的能力。更重要的是,六年级(下册)列方程解答稍复杂的百分数应用题,要以现在的综合算式的数量关系为依托。

教材里稍复杂的求一个数的几分之几是多少的实际问题都是两步计算的问题,这些实际问题的数量关系是教学重点,也是难点。为此,编排了两道例题。例2及练一练都是先求总数的几分之几是多少,再求总数的另一部分是多少。例3及练一练都是先求一个数的几分之几是多少,再求比这个数多(少)几的数是多少。两道例题循序渐进地引导学生把第三单元里学到的求一个数的几分之几是多少这个数量关系与实际生活中的其他数量关系联系起来,提高解决实际问题的能力。

第三,不教学稍复杂的分数除法问题。传统教材教学分数乘法应用题之后还教学分数除法应用题,而且把除法应用题与乘法应用题对称编排。本单元只编排分数乘法问题,不教学除法问题,要突出稍复杂的求一个数的几分之几是多少的问题的数量关系。因为分数乘法问题在日常生活中比较常见,它的数量关系、解题思路能迁移到稍复杂的百分数问题中去。

一、 一题两解既含运算顺序,又含运算律的内容。

例1求做两种中国结一共用的彩绳数量,由于这个实际问题具有特殊性(两种中国结的个数相同,两种中国结每个用彩绳的米数不同),所以它有不同的解法。教材充分利用这一特殊性,让学生按不同的思路列综合算式解答,能有两个收获:第一个收获是体会分数四则混合运算的运算顺序。算式2/518+3/518的思路是,先分别求出两种中国结各用彩绳多少米,因此列出的算式要先算乘法。算式(2/5+3/5)18的思路是,先求出两种中国结各做一个要用彩绳的米数,这正是在算式里加括号的目的。所以,计算有括号的算式,要先算括号里面的。类似上面的那些体会,在教学整数四则混合运算时曾经有过。教学分数四则混合运算,再次体会运算顺序的合理性、必要性和可操作性是认知的需要。而且,获得这些体会并不困难。第二个收获是两种解法的结果相同,不但相互印证解答正确,还为理解运算律创造了具体的背景。

在教学运算顺序时还要注意两点: 一是让学生看着列出并计算的两道综合算式,说说分数四则混合运算的运算顺序,使解决实际问题得到的体会成为十分清楚的数学知识;二是引导学生回忆整数四则混合运算顺序,并和分数四则混合运算顺序相比较,看到两者的相同,使它们和谐结合,从而对运算顺序形成更具概括性的认识。

比较两种解法之间的联系是感受运算律的存在,比较哪种方法简便是引导简便运算。需要说明的是,第三单元计算分数连乘,把各个乘数的分子、分母交叉约分,已经在应用乘法交换律和结合律,所以本单元着重体会乘法分配律。教学时要处理好三点:首先是观察、讲述两种解法的联系,要让学生说说怎样把其中一道综合算式改写成另一道综合算式,加强对乘法分配律的理解和表述。然后是回忆分数连乘,让学生感受以前的计算已经应用了乘法的另两条运算律。如139/10,交叉约分时应用了乘法结合律,只是没有写出1/4(110);又如253/4,约分时应用了乘法交换律,只是241/5这个过程没有写出来。最后才总结出整数的`运算律在分数运算中同样适用,即分数乘法也存在交换律、结合律、分配律,运算律也能使一些计算变得简便。

应用乘法分配律进行简便运算,例1仅作些引导,要通过练习才能掌握。和整数、小数范围内应用乘法分配律简便计算相比,这里的计算往往有两个特点:一是隐蔽,如6656/7。这是一道两数之积减两数之商的题,似乎与运算律对不上号。如果把分数除法转化成分数乘法,就显露出两个乘法算式有相同的因数,具备应用乘法分配律的必要条件。二是易混,如44/5+4/54。粗糙地看这道计算题,它的两道除法算式似乎很有联系,稍不留心就陷入简算误区。只有细心地把分数除法变成乘法,才会明白这道题不适宜应用分配律。本单元教材设计简便运算的练习题,注意了这两个特点。另外,还把按运算顺序计算和应用运算律简便计算混合编排,如第92页第2题。让学生设计各道题的算法,是培养计算能力的一种有效手段,也是促进思路灵活、反应灵敏的一种训练。

二、 数形结合教学较复杂问题的数量关系。

例2和例3是稍复杂的分数乘法应用题,它们都含有求一个数的几分之几是多少的数量关系。说它们稍复杂,是因为还分别含有其他的数量关系,有多种解法。就例2来说,可以根据运动员总人数减男运动员人数得女运动员人数列出算式459;也可以根据女运动员人数占运动员总人数的(19)列出算式45(19)。再说例3,可以根据去年班级数加今年比去年多的班级数得今年的班级数列出算式24+241/4;也可以根据今年的班级数是去年的(1+1/4)列出算式24(1+1/4)。教学这两道例题,教材里只出现前一种解法。因为这种解法的数量关系,是实际问题中最基本的数量关系,学生比较熟悉,已经掌握,容易寻找。而且,这些数量关系还是列方程解答其他分数、百分数应用题的基本关系,在以后的教学直至初中数学里经常应用。至于后一种解法,发展了对一个数的几分之几的认识,从一个已知的分率联想了其他的分率。如果学生能够独立想到,并且喜欢这样列式,应该是允许的。教材不出现后一种解法,不把它教给学生,是着眼今后,突出重点,减轻负担。

两道例题都利用线段图直观表达数量关系,帮助学生形成解题思路。例2已经画出了表示六年级参加学校运动会的人数的线段,学生在线段上表示男运动员占5/9的时候,会想到线段的另一部分表示的是女运动员人数,从而得到先算男运动员有多少人的思路。例3已经画出表示去年班级数的线段,要求学生继续画表示今年班级数的线段,从中体会今年班级数比去年多1/4的含义,看清今年班级数与去年班级数之间的关系,想到可以先算今年增加了几个班。教材引导学生画线段图,其目的不仅是帮助理解例题的数量关系和解题步骤,还要积累画线段图的体会和经验。以后解决实际问题,尤其是完成练一练和练习十六里的习题时,若有需要,能主动地通过画图帮助思考。为此,要加强画线段图的教学。首先让学生理解,先画出表示运动员总人数的线段和表示去年班级数的线段,才能继续表示男运动员人数和今年的班级数。这是分析男运动员占5/9以及今年班级数比去年增加1/4这两个分数的意义,得出的画图思路。其次让学生理解,男运动员是运动员总人数的一部分,可以表示在运动员总人数的线段图上。而今年的班级数与去年的班级数之间是比较关系,不存在包含与被包含的关系,因此各画一条线段表示它们。最后让学生看着画成的线段图,复述实际问题的题意,从中获得解题思路,体会线段图是表示数量关系的手段,是解决实际问题的工具。

练习十六里设计了一些题组,通过解题和比较,能进一步理解数量关系,明确解题思路。第4题的两问是连续的,先求得已经铺设的米数,就能继续求还要铺设的米数。比较这两问,能明白前一问里求840米的3/5是多少,后一问是从电缆总长里去掉已经铺设的米数。第8题的两小题分别是面粉比大米少1/5和面粉比大米多1/5,比较两个分数的意义,能理解两个问题的解法有何不同,以及为什么不同。第12题的两小题里都有1/4,一道题里是用去1/4,另一道题里是还剩1/4。因此,算式54在两道题里的意义不同。虽然两题都是求钢条还剩下的米数,解法不同的道理是很清楚的。第13题里设计了两个意义不同的1/8,其中一个1/8表示的是实际用煤节约的吨数相当于计划用煤吨数的份额,另一个1/8是实际用煤节约的吨数。由于两小题里实际用煤节约的吨数直接已知或不直接已知,求实际用煤吨数的方法自然就不同了。

《混合运算的教案通用7篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭