小学奥数鸡兔同笼教案6篇

时间:2024-06-28 10:25:55 分类:工作计划

教师编写教案是备课工作的重要组成部分,可以促进学生的学习,有了一份教案,帮助教师更好地反思教学过程,提升自身教学水平,下面是尚华范文网小编为您分享的小学奥数鸡兔同笼教案6篇,感谢您的参阅。

小学奥数鸡兔同笼教案6篇

小学奥数鸡兔同笼教案篇1

教学目标:

1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。

2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。

3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。

教学重点:

会用假设法和方程法解答“鸡兔同笼”问题。

教学难点:

明白用假设法解决“鸡兔同笼”问题的算理。

教学用具:

多媒体课件。

教学过程:

一、创设情境,引入新课。

引入:

同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。你们想看一看吗?

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。鸡和兔共有35个头,94只脚。鸡和兔各有多少只?

这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。板书课题:“鸡兔同笼”。

为便于研究,我们先从简单的生活问题入手,请看下面问题。

学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。两种票各买来了多少张?

?设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。

二、自主学习、小组探究

对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。

温馨提示:

①用列举法怎样解决问题?

②你能用画图的方法解答吗?

③如果把这些票都看成学生票或都看成成人票如何解答?

④回顾列方程解决问题的经验,怎样用方程解决问题?

学生自己根据提示用自己喜欢的方法解决问题。

先把自己的想法在小组内说一说,再共同协商解决。

教师巡视,要注意发现学生的不同解法,同时参与小组的指导。

三、汇报交流,评价质疑

对于解决这个问题,同学们一定有自己的好的方法,请把你的好办法同大家交流吧。

1、列举法。

可以有目的的先展示这种方法。(多媒体展示。)

质疑:有50张票,是否有必要一一列举,你是如何列举的?

(引导学生通常先从总数的中间数列举。)

质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?

(引导学生根据数据特点确定调整方向、调整幅度。)

师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。(板书:枚举法)

2、假设法

(1)假设全是成人票:

①为了便于学生理解,展示假设为成人票,学生试画的分析图。(图略)

②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。

(学生试着列算式,请两个学生到黑板上去板演。)

预设板演:

50×6=300(元)300-260=40(元)40÷(6-4)=20(张)

50-20=30(张)

③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和成人票的?

预设回答:

假设全是成人票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。

而1张学生票看做成人票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,成人票就是50-20=30张。

(2)假设全是学生票:

如果假设成全是学生票该如何解答?(学生根据刚才的经验独立解答,交流时重点说清推理思路。)

总结方法归纳抽象出这类问题的模型。

学生票数=(成人票价×总张数-总钱数)÷(成人票价-学生票价).

成人票数=(总钱数-学生票数×总张数)÷(成人票价-学生票价).

3、方程法:

除了以上两种方法,还有别的计算方法了吗?

学生汇报列方程的方法。

(1)找出相等的数量关系。

(学生汇报,课件出示:成人票数+学生票数=50;成人钱数+学生钱数=260

元)

(2)根据等量关系列式:

设成人票有x张,则学生票有(50-x)张。

列方程为:6x+4(50-x)=260

(解略)

4、学生比较以上几种方法解题方法。

四、抽象概括,总结提升。

让学生结合自己解决问题的经验,用自己的语言进行总结。

列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。

画图法:操作简单,比较直观。但数字大的时候,画图也是比较麻烦的。

假设法:适合所有的这类问题,但比较抽象,不好理解。

方程法:适用面广,便捷,容易理解。

师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。只不过列举法对于数据较大时比较麻烦。一般我们采用假设法和解方程的方法比较简便。

?设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的模型,及解决这类问题的一般方法和策略。

五、巩固应用,拓展提高

1.今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?(回应开课时的问题。)

温馨提示:

a.先让学生认真读题,(同桌讨论)。

b.然后自己解决,汇报交流。交流时同时让学生感受中华民族悠久的数学文化。

2.王丽有20张5元和2元的人民币,一共是82元。5元和2元的人民币各有多少张?

处理方法:

①学生认真读题,引导学生对比“鸡兔同笼”问题模型,分析数量关系,然后选择合适的方法独立解答。

②小组内交流算法。

③全班交流。

?设计意图】本题是“鸡兔同笼”问题模型,在现实生活中的应用,鼓励学生用自己喜欢的方法解答。进一步巩固“鸡兔同笼”问题的`各种解法,培养学生的实践应用能力。

巩固练习:回应解决例题,引导学生用合适的方法计算。然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)

?设计意图】让学生寻找生活中的鸡兔同笼问题,使学生感受到“鸡兔同笼”问题在生活中的广泛应用。

全课小结:

回顾总结,引发思考

本节课,我们在解决“鸡兔同笼”问题时,采用了几种策略,在这节课中,我发现同学们还有其他的解决方法,下课后相互交流一下,并尝试一下。

师总结:

这节课大家共同探究,解决了生活中类似“鸡兔同笼”问题的实际问题。只要我们善于动脑,好多问题都可以归为一类问题,抽象出一个总的模型进行解决。

小学奥数鸡兔同笼教案篇2

一、目标

?知识与技能】

理解掌握并会运用列表法、假设法解决“鸡兔同笼”问题。

?过程与方法】

经历自主探索解决问题的过程,体验解决问题的策略的多样化;在解决问题的过程中,提高逻辑推理能力,增强应用意识和实践能力。

?情感态度价值观】

感受古代数学问题的趣味性。

二、重难点

?教学重点】

掌握运用列表法、假设法解决“鸡兔同笼”问题。

?教学难点】

理解掌握假设法,能运用假设法解决数学问题。

三、过程

(一)引入新课

ppt呈现课本的主题图,并提问:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?是什么意思?大家能不能算出各几何呢?

引出课题——《鸡兔同笼》

(二)探索新知

先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下

教师总结学生回答:3只兔子,5只鸡,22只脚;4只兔子,4只鸡,24只脚。均不对

追问:按顺序列表填写一下,应该是各有几只?

得出结论有3只鸡,5只兔子。

进一步追问:还有没有其他方法?

学生活动:前后四人一小组讨论。

教师总结:假设笼子里都是鸡,那么多出来的脚的个数除以2便是兔子的只数,用头数减去便得到鸡的只数。如果假设所有的动物都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。多出的10只脚均为兔子的,一只兔子比一只鸡多2只脚,所以算得有10÷2=5只兔,3只鸡。

(三)课堂练习

ppt再次出示导入中的问题“上有三十五头,下有九十四足,问雉兔各几何”

学生活动:学生自主选择喜欢的方法进行解决,一名学生到黑板上板演,其余学生独立完成,在黑板上板演的学生在结束后充当小老师给其他同学进行讲解

(四)小结作业

提问:今天有什么收获?

教师引导学生回顾解决鸡兔同笼问题的方法。

课后作业:思考还有没有其他方式能够解决鸡兔同笼问题?自己设计鸡兔同笼的问题去考考小伙伴或家人。

四、板书设计

五、课后反思

小学奥数鸡兔同笼教案篇3

教学目标:

1、知识与技能

让学生学会“列举法”,并运用“列举法”解决问题。

2、过程与方法

让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

让学生养成“尝试”的数学思维与方法。

3、情感态度与价值观

利用发现的规律,解决生活中的实际问题,体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和信心。

了解中国数学历史,渗透数学文化的思想。

教学重点:

让学生学会“列举法”,并运用“列举法”解决“鸡兔同笼”问题及相类似的数学问题。

教学难点:

让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

教学关键:

让学生经历列表、尝试和不断调整的过程,从中体会出解决问题的一般策略——列表。

教具准备:

三个表格,卡片。

教学过程:

一、导入

1、师:一只鸡有几条腿?一只兔有几条腿?(生齐答)

2、师:(出示卡片:三只鸡两只兔)这个笼子里一共有几个头?(生齐答)一共有多少条腿?(让生独立计算后,再指名说说计算的方法)

3、谈话导入:今天我们就一起来学习“鸡兔同笼”。(师板书课题:鸡兔同笼)

二、授新课

1、师:老师想考考你们,你们看

(师出示:鸡兔同笼,一共有8个头,20条腿,鸡、兔各有多少只?

师:请你赶快猜一猜吧!生:独立思考后全班交流。

(此时,学生很容易猜出,师首先肯定学生的各种想法,再说:我把

这题的数字变大一些,你能猜出鸡、兔各有多少只吗?

2、师(出示题目):鸡兔同笼,共有20个头,54条腿,鸡、兔各有多少只?

(1)a、让生齐读题目

b、师让生独立思考后再与同桌交流。

c、指名汇报(当学生猜不出答案时,师:我给大家带来了一位好朋友,它可以帮助我们解决这个问题,你看)师边说边出示表格)当学生猜出正确答案时,师追问:说说你是怎样想的?根据生的回答完成表格

d、 此时,师明确告诉学生:像这样依次尝试的方法我们就叫它一一列举法。(师板书:一一列举法)

e、 观察这个表格,你发现了什么?(指名生说)

(2) 小结:对于发现的同学及时给予表扬,你真是个善于发现的孩

子。

a、我们再来观察一下这个表格,我们从1开始假设时就有78

条腿和答案的54条腿相比,怎么样?我们能不能让列举的次数更少一些?现在就请你们四个人为一小组开始讨论:(讨论后再请小组汇报)

b、根据生的回答,师板书:

c、 师小结:你真是个爱动脑筋的孩子,真聪明!那我们也给

这个表格取一个形象的名字,就叫它跳跃式列举法(师板书:跳跃式列举法)

(3) 师:还有别的列举法?

a、 学生可能会说出取中列举法,师就问让其说清楚,明白。

学生可能说不出时,师出示(先假设鸡和兔各占一半,再列表),再让生试填表格3,最后集体订正。

b、像这样,从中间开始列举的方法叫取中列举法(师板书:取中列举法)

3、 观察比较这三种列举法,你喜欢哪种?为什么?(指明生说,师再小结)

4、师:在我们的实际生活中,还有很多类似鸡兔同笼的问题,

大家有信心运用所学问题解决实际问题吗?

三、课堂练习

1、试一试

完成81页练一练第2、3题。(先独立完成再集体订正。)

2、 深化练习:一次数学竞赛,共10道题,每做对一道可得8分,每做错一道扣5分,小英最后得41分,她做对了几道题?(此题有时间就做,没时间就不做。)

四、课堂小结:

通过这节课的学习,你学会了什么?(先请生说,师再总结。)

小学奥数鸡兔同笼教案篇4

一、古语鸡兔同笼题,揭示课题。

1、今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

生模仿古人读题,说说自己的理解。

2、揭示课题

二、自主探索,解决问题

1、简化鸡兔同笼。

笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?

2、探究方法

(1)列表法

鸡876543210兔012345678

(2)画图假设

用圆圈来表示鸡兔的头。那么,不管鸡兔具体有几只,我们首先要画几个圆圈?

现在,我想请一位同学来说说看,接下来该怎么办了?

师根据学生的述说添画脚,并适时地提问、板书:

少了几只脚?

2只2只地添,得添几个这样的2只?

94-70=24

24÷2=12

35-12=23

小结:看来,画图确实挺形象、直观的,同学们也容易理解。

三、推广应用,形成技能

“鸡兔同笼”问题不仅在中国非常有名,还流传到许多其他的国家。比方说

我们的.邻国日本,有一种“龟鹤算”的数学问题,就是从“鸡兔同笼”演变过去的。

出示:有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

师:请你们用今天这节课学到的方法来解决这道题。

四、全总课总结

今天这节课,我们跨越了1500多年的历史,探讨了中国古代的数学名题。其实,像“鸡兔同笼”这样有趣的数学问题,在中国古代还有很多,有兴趣的同学可以多了解这方面的资料,我想,对你们的学习是很有帮助的。

本节亮点:

1、本节课,杨老师主要介绍的是”表格法“和”画图假设法“,让学生一一列举出来或者画图,化抽象为具体。

2、杨老师在处理”画图假设法“中,借助画图,把每一步列式所求的什么,引导学生说清楚。

小学奥数鸡兔同笼教案篇5

数也可以求出来。

6、小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。

__ 古人是怎样解决“鸡兔同笼”问题的?

1、假如让鸡抬起一只脚,兔子抬起两只脚,还有94÷2=47只脚。

2、这时每只鸡一只脚,每只兔子两只脚。笼子里只要有一只兔子,则脚的总数就比头的总数多1。

3、这时脚的总数与头的总数之差47-35=12,就是兔子的只数。

三、巩固练习

课本105页“做一做”的1、2题。

四、课堂总结:

师:通过今天的学习,你有哪些收获?

板书设计:鸡兔同笼

化繁为??

列表法

假设法:1)假设都是鸡

2)假设都是兔

教学反思:人教版四年级下册第九单元数学广角中—《鸡兔同笼》

教材分析:

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,其教学方法与常规课不同。数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

学情分析:

“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的应用意识与应用能力方面需要进一步培养。

教学目标:

1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。

教学重点:

会用画图法、列表法和假设法解答“鸡兔同笼”问题。

教学难点:

用合理的方法解答生活中的“鸡兔同笼”问题。

教具准备:

多媒体课件、表格等。

教学过程:

一、创设情境、揭示课题。

1、播放《奔跑吧,兄弟》主题曲,同学们,你们知道这是什么节目的主题曲吗?

2、播放视频,介绍:20_年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。

这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著, 今天,我们就来研究中国历史上著名的数学趣题 “鸡兔同笼问题”。(板书课题)

2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看。

出示题目:鸡兔同笼一共有8个头,一共有26条腿。 鸡和兔各有几只?

二、合作探究、学习新知:

活动一:探究用猜测列表法解决“鸡兔同笼”问题。

学习方式:自学教材,小组合作交流

1、师:请大家自由读题,你们都知道了什么信息?

生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?

师:还有补充吗?有两个隐藏条件看谁细心发现了?。

生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。

2、先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?

学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。

(1)师:我们采用列表法得出的答案,好吗?翻开书104页,按照顺序列表试一试。

(2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。

(汇报交流)

小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。

活动二:探究用假设法解决“鸡兔同笼”问题。

学习方式:自学教材,小组合作交流。

小组1:假设全都是鸡:2×8=16(条)26-16=10(条) 10÷2=5(只)??兔子 8-5=3(只)??鸡 谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法。”

师:除了可以假设都是鸡,还可以怎样假设呢?

小组2:引导学生说出都是兔,并演示。

师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?

师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。

小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)

3、发散思考、加深理解。

下面我们来帮陈赫找到他房间的密码,解放他吧!

出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?

师:我们发现课本上的假设法理解起来比较抽象,现在大家换一种假设法来思考。你们看,这样行不行?

生:是什么样的假设法,让我们先睹为快!

师:是这样的,如果让每只兔子都立起两条腿,这时,鸡和兔的脚数是相等的,接下来会出现什么样的情况呢?

生:每个头有两条腿,35个头是70条腿。(94-70)少了24条腿,正好可以求出兔子的只数,24除以2等于12。

生:鸡的只数为:35-12 = 23(只)。

师:还有别的做法吗?怎样解答?

生:把每只鸡的翅膀看成是两条腿。这样每只头对应的是4条腿。共有140条腿,多出46条腿,多出的是23只鸡的腿,那么,兔的只数

小学奥数鸡兔同笼教案篇6

时间:

20__年12月3日

地点:

大会议室

主备人:

崔__

参加人员:

六年级全体数学教师

教研内容:

“鸡兔同笼”问题

教学目标:

1、初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题。

2、结合图解法理解假设的方法解决鸡兔同笼问题。

3、在现实情景中,让学生初步体会画图、列表、假设等多种解题策略,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

教学重点:

能用列表法和画图法解决相关的实际问题。

教学难点:

结合图解法理解假设的方法解决鸡兔同笼问题。

重难点突破:

借助已有数据利用列表尝试(枚举法)解决问题从中体会数据之间的变化特点,有意识的为下面的方法做好铺垫,通过适当地 引导和学生小组合作探究相结合,让学生在尝试、探索、交流中农动“鸡兔同笼”问题的基本结构,经历不同的方法结局问题的过程形成此类问题的一般性策略。

模式方法:

提出问题——列举尝试——观察发现——讨论交流——寻找解法。

作业设计:

有浅入深“鸡兔同笼”的基本题型多练。

组内教师讨论要点:

1、引导学生理解提议,找出隐藏条件,帮助学生初步理解“鸡兔同笼”问题的结构特点。

2、列表虽然繁琐,但是一种重要的解决问题的策略的方法,是解法的基础,是重要教学内容之一,从中体会数量的变化规律。

3、假设法是学生应该掌握的一种方法,要让学生准确的说明算理,体会为什么假设的与所求的结果不是一致的道理。

4、列方程解时要借助实例,体会设x的技巧,因为学生学习内容的局限性,让学生体会设其中只数多的兔为x的道理,方法是设出一部分,根据总数列出方程(易列难解)

活动总结:

全体教师针对研究主题进行研讨,各抒己见,畅所欲言,结合自己以往的教学经验,探讨重点难点的突破方法,以教学中要注意的问题,让全体教师对刺客的教学内容有明确的思路。

《小学奥数鸡兔同笼教案6篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭