书的排列的教案8篇

时间:2023-08-23 10:02:39 分类:工作计划

在编写教案时,我们要考虑到学生的年龄特点,采用恰当的教学方法,教案需要具备一定的层次感,引导学生由浅入深地学习,以下是尚华范文网小编精心为您推荐的书的排列的教案8篇,供大家参考。

书的排列的教案8篇

书的排列的教案篇1

教学设计思路

本节是一节具有一定综合性和活动性的课题学习,这个课题学习选用了与学生生活联系密切的键盘上字母的排列规律问题。教科书直接把需要的数据──字母使用频率以表格的形式提供出来,仅要求学生根据频率,按从大到小的顺序把键盘上的字母排列出来,最后估计每个字母出现的概率,从而解释为什么键盘上的字母如此排列。

教学目标

知识与技能

能根据教科书提供的数据字母使用频率,按从大到小的顺序把键盘上的字母排列出来,最后估计每个字母出现的概率,从而解释为什么键盘上的字母如此排列。

过程与方法

通过经历从大到小地排列各字母使用频率的过程,感受概率在现实生活中的重要作用。

情感态度价值观

进一步感受用样本估计总体的统计思想及概率的思想,进一步体验概率在进行决策时的重要作用。

教学重点和难点

重点是键盘上字母的排列规律问题的研究;

难点是体会概率的广泛应用。

教学方法

小组讨论

课时安排

1课时

教学过程设计

(一)引入

生活中许多问题都与概率有密切的关系,下面我们通过对计算机或打字机的键盘上英文字母的排列规律的研究,体会概率的广泛应用。

(二)课题学习

问题1计算机或打字机的键盘上英文字母是如何排列的?是按照字母表顺序从a,b依次排列一直到z吗?

观察实际的键盘可以发现,键盘一般是按照如图25.41的方式排列英文字母的,并不是按照字母表顺序。

书的排列的教案篇2

教学目标

(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;

(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。

教学建议

一、知识结构

二、重点难点分析

本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中.

从n个不同元素中任取(≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同.排列数是指从n个不同元素中任取(≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数.排列与排列数是两个概念,前者是具有个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数.

公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好 的推导.

排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力.

在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.

在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求.

三、教法建议

①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念.一个排列是指“从n个不同元素中,任取出个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出个元素的所有排列的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:

ab,ac,ba,bc,ca,cb,

其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数.

②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”.

从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列.

在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别.

在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列.

要特别注意,不加特殊说明,本章不研究重复排列问题.

③关于排列数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不完全归纳法,先推导 ,…,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的.

导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“”比较复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共个因数相乘.”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘.

公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的.排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释.

④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解.

⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求.

教学设计示例

排列

教学目标

(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

(3)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

教学重点难点

重点是排列的定义、排列数并运用这个公式去解决有关排列数的应用问题。

难点是解有关排列的应用题。

教学过程设计

一、 复习引入

上节课我们学习了两个基本原理,请大家完成以下两题的练习(用投影仪出示):

1.书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书.

(1)从中任取1本,有多少种取法?

(2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?

2.某农场为了考察三个外地优良品种a,b,c,计划在甲、乙、丙、丁、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?

找一同学谈解答并说明怎样思考的的过程

第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法.根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是: 50×40=20xx.

第2题说,共有a,b,c三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3×5=15个实验小区.

二、 讲授新课

学习了两个基本原理之后,现在我们继续学习排列问题,这是我们本节讨论的重点.先从实例入手:

1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?

由学生设计好方案并回答.

(1)用加法原理设计方案.

首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票.

(2)用乘法原理设计方案.

首先确定起点站,在三个站中,任选一个站为起点站,有3种方法.即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选.那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序排列不同方法共有3×2=6种.

根据以上分析由学生(板演)写出所有种飞机票

再看一个实例.

在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?

找学生谈自己对这个问题的想法.

事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数.

首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;

其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.

根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种).

根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况.(包括每个位置情况)

第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来.

由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数.

根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个).

请板演的学生谈谈怎样想的?

第一步,先确定百位上的数字.在1,2,3,4这四个数字中任取一个,有4种取法.

第二步,确定十位上的数字.当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法.

第三步,确定个位上的数字.当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法.

根据乘法原理,所以共有4×3×2=24种.

下面由教师提问,学生回答下列问题

(1)以上我们讨论了三个实例,这三个问题有什么共同的地方?

都是从一些研究的对象之中取出某些研究的对象.

(2)取出的这些研究对象又做些什么?

实质上按着顺序排成一排,交换不同的位置就是不同的情况.

(3)请大家看书,第×页、第×行. 我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素.

上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法.

第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法.

第三个问题呢?

从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法.

给出排列定义

请看课本,第×页,第×行.一般地说,从n个不同的元素中,任取(≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出个元素的一个排列.

下面由教师提问,学生回答下列问题

(1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?

从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同.两个条件中,只要有一个条件不符合,就是不同的排列.

如第一个问题中,北京—广州,上海—广州是两个排列,第三个问题中,213与423也是两个排列.

再如第一个问题中,北京—广州,广州—北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排列.

(2)还需要搞清楚一个问题,“一个排列”是不是一个数?

生:“一个排列”不应当是一个数,而应当指一件具体的事.如飞机票“北京—广州”是一个排列,“红黄绿”是一种信号,也是一个排列.如果问飞机票有多少种?能表示出多少种信号.只问种数,不用把所有情况罗列出来,才是一个数.前面提到的第三个问题,实质上也是这样的.

三、 课堂练习

大家思考,下面的排列问题怎样解?

有四张卡片,每张分别写着数码1,2,3,4.有四个空箱,分别写着号码1,2,3,4.把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)

分析:这是从四张卡片中取出4张,分别放在四个位置上,只要交换卡片位置,就是不同的放法,是个附有条件的排列问题.

解法是:第一步把数码卡片四张中2,3,4三张任选一个放在第1空箱.

第二步从余下的三张卡片中任选符合条件的一张放在第2空箱.

第三步从余下的两张卡片中任选符合条件的一张放在第3空箱.

第四步把最后符合条件的一张放在第四空箱.具体排法,用下面图表表示:

所以,共有9种放法.

四、作业

课本:p232练习1,2,3,4,5,6,7.

数学教案-排列教学目标

书的排列的教案篇3

一、教学目标

(一)知识与技能

让学生在操作、观察、猜测等活动中了解并发现最简单事物的排列数的基本思路和解决方法,培养学生有序、全面地思考问题的意识,初步体会排列的思想方法。

(二)过程与方法

在发现最简单事物的排列数的过程中,培养学生初步的观察、分析、推理能力,以及恰当地进行数学表达的能力。

(三)情感态度和价值观

使学生初步感受排列的思想方法在日常生活中的应用,初步感受数学与生活的密切联系。

二、目标解析

创设情境,让学生在动手操作中探究排列问题的解决方法,在操作探究中引导学生有序、全面地思考问题,在解法交流中体会解法多样化,在巩固提高中体会到数学和生活的密切联系,同时帮助学生感悟数学思想。

三、教学重难点

教学重点:经历探索最简单事物的排列的过程,并掌握其解决方法。

教学难点:体会排列的思想方法。

四、教学准备

课件、数字卡片等

五、教学过程

(一)创设情境,引发探究

1、猜一猜

一个密码箱的密码是由1、2两个数字组成的两位数,猜一猜:密码箱的密码可能是多少?

2、做一做

(1)小组内动手操作,用数字卡片来摆一摆,然后小组内交流,重点交流:找出密码的方法(交换数字的位置)。

(2)补充条件,找出密码。

①补充条件:个位上的数字比十位上的数字大。

②根据补充的条件,找出密码,密码箱的秘码是12。

3、揭示课题

像上面找密码的问题,实际上就是我们数学上的排列问题,今天这节课我们就来学习-简单的排列。

?设计意图】让学生在找密码的活动中初步感知排列问题,初步掌握组数的方法,培养学生全面思考问题的意识,拓展学生的思维。并放手让学生动手摆卡片,既增强学生的动手能力,又为新知的建构提供直观的表象。

(二)动手操作、探究新知

1、摆数游戏,初步感知

(1)呈现问题,引导探究。

①课件出示第97页的例1。

用1、2和3组成两位数,每个两位数的十位数和个位数不能一样,能组成几个两位数?

②小组内交流解决问题的方法。

(2)动手操作,交流排法。

①学生动手摆卡片,尝试解答,组内交流摆法。

②老师巡视时发现:有的写得多,有的写得少呢?有什么好的方法能保证既不漏数、又不重复呢?

③学生再次交流摆法,寻找摆数时的规律。(摆数时要有序)

④学生汇报、交流摆法。

预设摆法如下:

方法一:调换位置法。

a.取卡片1和2,组成12和21。

b.取卡片1和3,组成13和31。

c.取卡片2和3,组成23和32。

方法二:固定十位法。

a.先固定十位上的数字为1,可以摆成12和13。

b.先固定十位上的数字为2,可以摆成21和23。

c.先固定十位上的数字为3,可以摆成31和32。

教师引导学生发现这种方法实际就是按从小到大的顺序来列举的

方法三:固定个位法。

a.先固定个位上的数字为1,可以摆成21和31。

b.先固定个位上的数字为2,可以摆成12和32。

c.先固定个位上的数字为3,可以摆成13和23。

⑤小结:无论采用哪种方法,只要做到有序,组成的数都是几个?

(3)评议方法,进行优化。

你喜欢用哪种方法来解决呢?与同桌说说你喜欢的方法。

2、尝试练习,巩固方法

(1)课件出示教材第97页的做一做,先组内交流解决的方法。

(2)学生独立完成涂色,然后小组内交流涂法。

(3)学生涂法展示,选择有代表性的方法进行展示。

(4)小结:在涂色时一定要有序的涂,不能乱,这样才能不漏、不重复。

?设计意图】让学生经历摆一摆、说一说等活动过程,亲身体会到在组数、涂色时,一定要做到有序,只有有序才会不遗漏、不重复的将所有的数全部列举出来。同时在汇报与交流中体会到排列方法的多样化和优化,培养学生的动手能力、合作意识和交流能力。

(三)应用拓展,深化方法

1、拍照片

教材第99页练习二十四第1题。

(1)找3名学生到前面来演示,帮助学生理解题意,强调:站位时要有序。

(2)学生独立思考,然后组内交流站法。

(3)学生汇报站法,全班交流方法。

2、送书

教材第99页练习二十四第2题

(1)找3名学生到前面来演示,帮助学生理解题意,强调:送书时要有序。

(2)学生独立思考,然后组内交流方法。

(3)学生汇报,全班交流方法。

3、穿衣服

教材第99页练习二十四第3题

(1)学生独立完成,然后组内交流方法。

(2)指定不同方法的学生汇报交流。

?设计意图】通过解决不同类型的排列问题,让学生进一步巩固排列问题的解决方法,感受有序思考的必要性,提高解决问题的能力,体会数学知识和现实生活的密切联系。

(四)总结延伸,畅谈感受

今天这节课我们在动手操作中学了什么?你有什么收获?以后在解决这类问题时应注意什么?

书的排列的教案篇4

求解排列应用题的主要方法:

直接法:

把符合条件的排列数直接列式计算;

优先法:

优先安排特殊元素或特殊位置

捆绑法:

把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列

插空法:

对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中

定序问题除法处理:

对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列。

间接法:

正难则反,等价转化的方法。

例1:有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:

(1) 全体排成一行,其中甲只能在中间或者两边位置;

(2) 全体排成一行,其中甲不在最左边,乙不在最右边;

(3) 全体排成一行,其中男生必须排在一起;

(4) 全体排成一行,男生不能排在一起;

(5) 全体排成一行,男、女各不相邻;

(6) 全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;

(7) 全体排成一行,甲、乙两人中间必须有3人;

(8) 若排成二排,前排3人,后排4人,有多少种不同的排法。

某班有54位同学,正、副班长各1名,现选派6名同学参加某科课外小组,在下列各种情况中 ,各有多少种不同的选法?

(1)无任何限制条件;

(2)正、副班长必须入选;

(3)正、副班长只有一人入选;

(4)正、副班长都不入选;

(5)正、副班长至少有一人入选;

(5)正、副班长至多有一人入选;

6本不同的书,按下列要求各有多少种不同的选法:

(1)分给甲、乙、丙三人,每人2本;

(2)分为三份,每份2本;

(3)分为三份,一份1本,一份2本,一份3本;

(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;

(5)分给甲、乙、丙三人,每人至少1本

例2、(1)10个优秀指标分配给6个班级,每个班级至少

一个,共有多少种不同的分配方法?

(2)10个优秀指标分配到1、2、 3三个班,若名

额数不少于班级序号数,共有多少种不同的分配方法?

.(1)四个不同的小球放入四个不同的盒中,一共

有多少种不同的放法?

(2)四个不同的小球放入四个不同的盒中且恰有一个空

盒的放法有多少种?

书的排列的教案篇5

活动目标:

1、继续学习手口一致地点数3以内物体的数量,能准确说出总数。

2、学习按量匹配相应实物,感知3以内数量的排列顺序。

活动重点:

学习按量匹配相应实物,感知3以内数量的排列顺序。

活动难点:

学习按量匹配相应实物,感知3以内数量的排列顺序。

活动准备:

1、草地背景图。

2、小动物卡片。(数量分别为1、2、3)

3、点卡卡片。(数量分别为1、2、3)

活动过程:

一、创设情境,激发兴趣,继续巩固学习手口一致地点数3以内的数量。

教师:你们喜欢和小朋友一起玩,小动物也喜欢和你们玩,你们看,有好多小动物出来玩了呢!都有谁来了呢?

教师:哦,有小狗,小猪还有小猴子呢!

教师:小狗有几只?

教师:小猪有几只?

教师:小猴子又有几只呢?

教师小结:小狗有一只,小猪有2只,还来了三只小猴子。

二、通过比较准确感知数量的多少。

教师:每种小动物的数量一样多吗?

教师小结:每一种动物的数量都不一样。有的多有的少。

三、给小动物排队,准确感知数序。

教师:我们现在就来给它们排排队好吗?

教师:小朋友好好想一想谁排在最前面,谁排在最后面呢?

1、请个别幼儿上前操作,一边排一边说:xx排在最前面,xx跟在xx的后面。(集体验证排的结果)。

要求幼儿完整讲述排序的结果。

3、引导幼儿一起描述排队结果。

教师小结:我们把小动物按照从少到多的顺序给排列好了,现在它们就可以一去有秩序的玩了。

四、对应匹配点卡。

1、引导幼儿给小动物送点卡。

教师:小朋友们,你们看看,这个是什么?这是点卡,这样的方形卡纸上画了点的叫做点卡,一个点表示有一个小动物或者别的东西。教师;小动物第一次认识点卡,我们送些给它们好吗?该怎么送呢?

教师小结:我们给一只小狗送1的点卡,两只小猪送2的点卡,三只猴子送3的点卡,因为它们数量一样多。

五、结束活动。

老师把点卡放在了区角里,你们在区域活动时也可以去拿来给小动物找一找朋友。

书的排列的教案篇6

活动目标:

1、学从多种颜色的物体中找出同一种颜色的物体,并进行归类。

2、促进幼儿比较,综合能力的发展。

活动准备:

1、环境创设:创设春天花园的情景,花园里有红、黄、白、三种颜色的花若干朵。

2、物质准备:花篮若干个,红、黄、白蝴蝶头饰各幼儿人数的三分之一,录音机,音乐磁带。

活动过程:

(一)幼儿伴随着轻柔的音乐,自由地到春天的花园里参观。

提问:花园里有几种颜色的花?都有哪几种颜色?

(二)教师讲诉故事《三只蝴蝶》(经过改编)

提问:1、故事里有几只蝴蝶?她们是什么颜色的?

2、她们喜欢什么颜色的花?

(三)引导幼儿进行按颜色分类。

1、以“送花”的游戏,引导幼儿进行颜色的分类,并请幼儿自行检查是否送对了花。

(1)请幼儿给红蝴蝶送它喜欢的花。

(2)请幼儿给黄蝴蝶送它喜欢的花。

(3)请幼儿给白蝴蝶送它喜欢的花。

2、以“避雨”的游戏,引导幼儿进行把颜色分类。

(1)教师讲解游戏玩法,

玩法:请幼儿选择自己喜欢的颜色的蝴蝶的头饰,扮演蝴蝶,在花园里自由飞翔玩耍。当听到打雷的声音后,赶快去找和自己相同颜色的花朵避雨。当太阳出来后,蝴蝶高高兴兴地在草地上唱歌、跳舞、做游戏。

(2)幼儿游戏,教师指导。

重点指导幼儿是否找到对颜色。

(四)幼儿在游戏中自然结束活动。

活动反思:

活动通过幼儿自己亲自操作、游戏等的一系列串联的活动,让幼儿掌握了如何按颜色分类,几个活动的目的虽都是让幼儿按颜色分类,但幼儿并不感到枯燥,而且参与活动的积极性很高,将本来单一的活动变得丰富起来,目标完成的很好。

书的排列的教案篇7

一.课标要求:

1.分类加法计数原理、分步乘法计数原理

通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;

2.排列与组合

通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;

3.二项式定理

能用计数原理证明二项式定理; 会用二项式定理解决与二项展开式有关的简单问题。

二.命题走向

本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。

排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。

考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目。

三.要点精讲

1.排列、组合、二项式知识相互关系表

2.两个基本原理

(1)分类计数原理中的分类;

(2)分步计数原理中的分步;

正确地分类与分步是学好这一章的关键。

3.排列

(1)排列定义,排列数

(2)排列数公式:系 = =n·(n-1)…(n-m+1);

(3)全排列列: =n!;

(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;

4.组合

(1)组合的定义,排列与组合的区别;

(2)组合数公式:cnm= = ;

(3)组合数的性质

①cnm=cnn-m;② ;③rcnr=n·cn-1r-1;④cn0+cn1+…+cnn=2n;⑤cn0-cn1+…+(-1)ncnn=0,即 cn0+cn2+cn4+…=cn1+cn3+…=2n-1;

5.二项式定理

(1)二项式展开公式:(a+b)n=cn0an+cn1an-1b+…+cnkan-kbk+…+cnnbn;

(2)通项公式:二项式展开式中第k+1项的通项公式是:tk+1=cnkan-kbk;

6.二项式的应用

(1)求某些多项式系数的和;

(2)证明一些简单的组合恒等式;

(3)证明整除性。①求数的末位;②数的整除性及求系数;③简单多项式的整除问题;

(4)近似计算。当|x|充分小时,我们常用下列公式估计近似值:

①(1+x)n≈1+nx;②(1+x)n≈1+nx+ x2;(5)证明不等式。

四.典例解析

题型1:计数原理

例1.完成下列选择题与填空题

(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有 种。

a.81 b.64 c.24 d.4

(2)四名学生争夺三项冠军,获得冠军的可能的种数是( )

a.81 b.64 c.24 d.4

(3)有四位学生参加三项不同的竞赛,

①每位学生必须参加一项竞赛,则有不同的参赛方法有 ;

②每项竞赛只许有一位学生参加,则有不同的参赛方法有 ;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。

例2.(06江苏卷)今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有 种不同的方法(用数字作答)。

点评:分步计数原理与分类计数原理是排列组合中解决问题的重要手段,也是基础方法,在高中数学中,只有这两个原理,尤其是分类计数原理与分类讨论有很多相通之处,当遇到比较复杂的问题时,用分类的方法可以有效的将之化简,达到求解的目的。

题型2:排列问题

例3.(1)(20xx四川理卷13)

展开式中 的系数为?______ _________。

?点评】:此题重点考察二项展开式中指定项的系数,以及组合思想;

(2).20xx湖南省长沙云帆实验学校理科限时训练

若 n展开式中含 项的系数与含 项的系数之比为-5,则n 等于 ( )

a.4 b.6 c.8 d.10

点评:合理的应用排列的公式处理实际问题,首先应该进入排列问题的情景,想清楚我处理时应该如何去做。

例4.(1)用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有 个(用数字作答);

(2)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示).

点评:排列问题不可能解决所有问题,对于较复杂的问题都是以排列公式为辅助。

题型三:组合问题

例5.荆州市20xx届高中毕业班质量检测(Ⅱ)

(1)将4个相同的白球和5个相同的黑球全部放入3个不同的盒子中,每个盒子既要有白球,又要有黑球,且每个盒子中都不能同时只放入2个白球和2个黑球,则所有不同的放法种数为(c) a.3 b.6 c.12 d.18

(2)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )

a.10种 b.20种 c.36种 d.52种

点评:计数原理是解决较为复杂的排列组合问题的基础,应用计数原理结合

例6.(1)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有 种;

(2)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( )

(a)150种 (b)180种 (c)200种 (d)280种

点评:排列组合的交叉使用可以处理一些复杂问题,诸如分组问题等;

题型4:排列、组合的综合问题

例7.平面上给定10个点,任意三点不共线,由这10个点确定的直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行。求:(1)这些直线所交成的点的个数(除原10点外)。(2)这些直线交成多少个三角形。

点评:用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对策之外,还要考虑实际几何意义。

例8.已知直线ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。

点评:本题是1999年全国高中数学联赛中的一填空题,据抽样分析正确率只有0.37。错误原因没有对c=0与c≠0正确分类;没有考虑c=0中出现重复的直线。

题型5:二项式定理

例9.(1)(20xx湖北卷)

在 的展开式中, 的幂的指数是整数的项共有

a.3项 b.4项 c.5项 d.6项

(2) 的展开式中含x 的正整数指数幂的项数是

(a)0 (b)2 (c)4 (d)6

点评:多项式乘法的进位规则。在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令 .在二项式的展开式中,要注意项的系数和二项式系数的区别。

例10. (20xx湖南文13)

记 的展开式中第m项的系数为 ,若 ,则 =____5______.

题型6:二项式定理的应用

例11.(1)求4×6n+5n+1被20除后的余数;

(2)7n+cn17n-1+cn2·7n-2+…+cnn-1×7除以9,得余数是多少?

(3)根据下列要求的精确度,求1.025的近似值。①精确到0.01;②精确到0.001。

点评:(1)用二项式定理来处理余数问题或整除问题时,通常把底数适当地拆成两项之和或之差再按二项式定理展开推得所求结论;

(2)用二项式定理来求近似值,可以根据不同精确度来确定应该取到展开式的第几项。

五.思维总结

解排列组合应用题的基本规律

1.分类计数原理与分步计数原理使用方法有两种:①单独使用;②联合使用。

2.将具体问题抽象为排列问题或组合问题,是解排列组合应用题的关键一步。

3.对于带限制条件的排列问题,通常从以下三种途径考虑:

(1)元素分析法:先考虑特殊元素要求,再考虑其他元素;

(2)位置分析法:先考虑特殊位置的要求,再考虑其他位置;

(3)整体排除法:先算出不带限制条件的排列数,再减去不满足限制条件的排列数。

4.对解组合问题,应注意以下三点:

(1)对“组合数”恰当的分类计算,是解组合题的常用方法;

(2)是用“直接法”还是“间接法”解组合题,其原则是“正难则反”;

(3)设计“分组方案”是解组合题的关键所在。

书的排列的教案篇8

【背景】

在日常生活中,有很多需要用排列组合解决的知识。如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机容量超过多少电话号码就要升位等。在数学学习中经常要用到推理,如加法和乘法的一些运算定律的推导过程,能被2、5、3整除的数的推导等。这节课安排生动有趣额活动,让学生通过这些活动进行学习。例1给出了一副学生用数学卡片摆两位数的情境图,学生在进行小组合作学习,先用2个卡片摆,学生通过操作感受摆的方法以后,再用3个卡片摆;然后小组交流摆卡片的`体会:怎样摆才能保证不重复、不遗漏。

【教材分析】

“数学广角”是新编实验教材新增设的内容,是新教材在向学生渗透数学思想方法方面做出的新的尝试。排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,这部分内容重在向学生渗透简单的排列、组合的数学思想方法,并初步培养学生有顺序地全面思考问题的意识。

【教学目标】

1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;

2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;

3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。

【教学重点】

经历探索简单事物排列与组合规律的过程

【教学难点】

初步理解简单事物排列与组合的不同

【教学准备】

多媒体、数字卡片。

【教学方法】

观察法、动手操作法、合作探究法等。

【课前预习】

预习数学书99页,思考以下问题:

1、用1、2两个数字能摆出哪些两位数?

2、用1、2、3这3个数字能摆出哪些两位数?可以动手写一写。

3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。

【教学准备】

ppt

【教学过程】

……

一、以游戏形式引入新课

师:同学们,今天老师带大家去数学广角做游戏。在门口设置了?,?上有密码。这个密码盒的密码是由数字1、2组成的一个两位数,想不想进去呢?

师:谁告诉老师密码,帮老师打开这个密码盒?(生尝试说出组成的数)

生:12、21

师:打开密码盒

师:打开了密码锁,进入数学广角乐园。一关一关的进行闯关活动。第一关:1、2、3能摆出哪些两位数?第二关:如果3人见面,每两个人握一次手,一共要握几次手?

(设计意图:不拘泥于教材,创设学生感兴趣的游戏引入新课,引起学生的共鸣。同时又渗透了简单组合及根据实际情况合理选择方法的数学思想,起到了一举两得的作用。)

二、游戏闯关活动对比

师:老师现在有一个疑问,排数字卡片时用3个数可以摆出6个数,握手时3个同学却只能握3次,都是3,为什么出现的结果会不一样呢?

结论:摆数与顺序有关,握手与顺序无关。

摆数可以交换位置,而握手交换位置没用。

(设计意图:以相同数量进行对比,为什么数字要比握手多一半呢?引发学生知识冲突从而引发思考,激发学生的求知欲。)

三、应用拓展,深化探究

1、数字宫

师:第三关现在我们去那里玩呢?我们一起看看!

从0、4、6中选择两个数字排成两位数,有几种排法?

总结:为什么和上面发现的结果不一样呢?问题出在谁的身上呢?(0)

为什么?(0不能做一个数的第一位)

2、选择线路

师:同学们,米老鼠带我们欣赏完数学广角,准备回家了,有几条路供它选择?演示:

问题:数学城堡到家里,到底有几种走法呢?

(1)分组讨论。

(2)学生汇报,教师演示。

(3)板书:a——ca——da——eb——cb——db——e

(设计意图:题目层次性强,与生活联系密切。不同的人在数学上得到不同的发展,人人学有价值的数学。)

【反思】

本节课的设计做到了以下几个亮点突破:

1、创设游戏情境,激发学生探究的兴趣。

整课节始终用创设的游戏情境吸引学生主动参与激发积极性。我设计了:门上的锁密码是多少?本节课通过闯关游戏创设“数字排列”中有趣的数字排列,激发了学生解决问题的探究欲望。又如通过创设“握手活动”与学生的实际生活相似的情境,唤起了学生“独立思考、合作探究”解决问题的兴趣。

2、课堂中始终体现以学生为主体、合作学习。

“自主、探究、合作学习”是新课程改革特别提倡的学习方式。本节课设计时,注意选则合作的时机与形式,让学生合作学习。在教学关键点时,为了使每一位学生都能充分参与,我选择了让学生同桌合作;在解决重难点时,我选择了学生六人小组的合作探究。在学生合作探究之前,都提出明确的问题和要求,让学生知道合作学习解决什么问题。在学生合作探究中,尽量保证了学生合作学习的时间,并深入小组中恰当地给予指导。合作探究后,能够及时、正确的评价,适时激发学生学习的积极性和主动性。

3、让学生在丰富多彩的教学活动中领悟新知。

本课通过组织学生主动参与多种教学活动,充分调动了学生的多种感悟协调合作,既让学生感悟了新知,又体验到了成功,获取了数学知识,真正体现了学生在课堂教学中的主体地位。

《书的排列的教案8篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭