2和5的倍数的特征教案7篇

时间:2024-06-09 10:27:08 分类:工作计划

教案的编写可以帮助教师避免因时间不足而匆忙跳过重要的知识点,教案可以帮助教师合理安排教学时间,确保教学进度的顺利进行,下面是尚华范文网小编为您分享的2和5的倍数的特征教案7篇,感谢您的参阅。

2和5的倍数的特征教案7篇

2和5的倍数的特征教案篇1

【学习内容】

教材p10例2。

【学习目标】

1.经历探索3的倍数的特征的过程,理解3的倍数的特征。(重、难点)

2.能判断一个数是不是3的倍数。(难点)

【知识链接 温故知新】

1.判断下面各数哪些是2的倍数?哪些是5的倍数?哪些既是2的 倍数又是5的倍数?

92 13 28 70 33 78 125

50 735 426 515 210 3055 1560

2的倍数:_________________________________________

5的倍数:_________________________________________

既是2的倍数,也是5的倍数:_________________________________________

2.说一说你是怎样判断的?它们各有什 么特征?

2的倍数的特征:_________________________________________

5的倍数的特征:_________________________________________

既是2的倍数,也是5的倍数的特征:_________________________________________

【自主学习 个体探究】

1.下表中哪些数是3的倍数?把它们圈起来或涂上颜色。

2.观察圈出的数,有什么发现?

温馨提示:可根据上节课知识的研究方法:找数、观察、猜想、验证、归纳,试着探索3的.倍数的特征。

思路导航:

1.横着看,圈起来的前10个数,个位分别是哪些数字?判断一个数是不是3的倍数,只看个位行吗?

2.斜着看,你发现了什么?

【合作探究 交流分享】

1.交流与讨论:四人小组交流发现。

2.探索与猜想:

(1)横着看,圈起的前 10个数:3,6,9,12,15,18,21,24,27,30

个位上0-9十个数字都有,只看个位数行吗?

(2)斜着看,你发现了什么?说说你的发现与猜想,3的倍数的特征是什么?

任意找几个3的倍数,把各位上的数相加,看看你有什么发现。

3.验证与归纳:

(1)根据猜想,每人各想一个符合猜想的数,检验是不是 3的倍数(可用计算器)。

(2)全班交流:3的倍数的特征是什么?你们验证了哪几个数?

(3)试着 找一个反例:各位上数的和是3的倍数,但这个数却不是3的倍数。

(4)归纳3的倍数的特征。

3的倍数的特征:_______________________________________

【归纳小结 整合知识】

这节课我们运用了数学上很重要的研究方法:观察、猜想、验证、归纳,研究3的倍数的特征,与2、5的倍数的特征不同,3的倍数的个位上可以是任何数字。一个数( )是3的倍数,这个数就是3的倍数。课下大家可以运用这种方法,继续研究9的倍数、11的倍数什么特征。

【当堂检测 达标演练】

1.判断。

(1)个位上是3、6、9的数都是3的倍数。 ( )

(2)是9的倍数的数一定是3的倍数。 ( )

(3)由7、3、2组成的三位数都是3的倍数。 ( )

(4)凡是3的倍数的都是奇数。 ( )

(5)一个非零自然数,不是奇数就是偶数。 ( )

2.不计算,在没有余数的算式后面画“√”。

154÷5= 38÷3= 207÷3=

297÷3= 189÷2= 358÷3=

3.下面用数字卡片摆出的数中,哪些是3的倍数?在每个数后面增加一张卡片,使这个三位数成为3的倍数。

4.圈出3的倍数。

92 75 36 206 65 3051 779 99999

111 49 165 5988 655 131 222 7203

思 考:像99999、7203这么大的数,你是怎么判断的?

学法指导:

(1)9是3的倍数,99999每一位上都是9,这个数就是3的倍数。

(2)7203中先把3和0划去,剩下的7+2=9,是3的倍数,所以,这个数是3的倍数。这种方法叫“弃3”法,就是 先把3的倍数划去,剩下的数再相加判断。

5.根据要求,在□里填上一个合适的数字。

(1)既是2的倍数,又有因数5。 675□

(2)是5的倍数,不是2的倍数。 38□

(3)既是3的倍数,又是5的倍数。 334□

(4)能同时被2、3、5整除。 8□8□

【学习反思】

2和5的倍数的特征教案篇2

教学内容:

教材19页内容,能被3整除的数的特征。

教学要求

使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。

教学重点:能被3整除的数的特征。

教学难点:会判断一个数能否被3整除

教学方法:

三疑三探教学模式

教具学具:

课件等。

教学过程

一、设疑自探(10分钟)

(一)基本练习

1、能被2、5整除的数有什么特征?

2、能同时被2和5整除的数有什么特征?

(二)揭示课题

我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)

(三)让学生根据课题提问题。

教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)

(四)出示自探提示,组织学生自探。

自探提示:

自学课本19页内容,思考以下问题:

1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。

2、能被2、3整除的数有什么特征?

3、能被2、3、5整除的数有什么特征?

二、解疑合探(15分钟)

1、检查自探效果。

按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。

2、着重强调;

一个数各个数位上的数字之和能被3整除,这个数就能被3整除。

三、质疑再探(4分钟)

1、学生质疑。

教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?

2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)

四、运用拓展(11分钟)

(一)学生自编习题。

1、让学生根据本节所学知识,编一道习题。

2、展示学生高质量的自编习题,交流解答。

(二)根据学生自编题的'练习情况,有选择的出示下面习题供学生练习。

1、判断下列各数能不能被3整除,为什么?

72 5679 518 90 1111 20373

2、58 115 207 210 45 1008

有因数3的数:()

有因数2和3的数:()

有因数3和5的数:()

有因数2、3和5的数:()

让学生说说怎么找的。

(三)全课总结。

1、学生谈学习收获。

教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。

2、教师归纳总结。

学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。

板书设计:

能被3整除的数的特征一个数各个数位上的数字之和能被3整除,

这个数就能被3整除。

2和5的倍数的特征教案篇3

教学目标:

1、通过自主探索,掌握2、3、5 的倍数的特征。

2、能判断一个数是不是2、5 或3 的倍数。

3、知道奇数和偶数,能判断一个数是偶数还是奇数。

教学重点:

2、3、5 的倍数的特征。

教学难点:

3 的倍数的特征是难点。

教学准备:

课件。

教学过程:

一、引入新课。

讲解导入:同学们,我们在前几节课中已经掌握了倍数和因数的特征。像2、3、5 这些特殊的数,它们的倍数又有哪些特征呢?这节课我们就一起来学习。(板书课题)

二、探究2 的倍数的特征。

1、引导:同学们都看过电影吧?电影票的票号和电影院入口一般都是怎样设置的?

2、出示教材第17 页主题图,问:双号的号码有什么特点?

3、引导学生明确奇数和偶数的概念:在自然数中,是2 的倍数的数叫做偶数(0 也是偶数),不是2 的倍数的数叫做奇数。(板书)

4、组织学生做“你说我判断”的游戏:同桌合作,一个同学任意说一个数,另一个同学判断一下对方说的是奇数还是偶数;交换角色再做。同桌之间互相说一些数,并判断是偶数还是奇数。

5、出示“做一做”的题目,让学生完成。(巡视;学生做完后集体订正)

三、探究5 的倍数的特征。

1、刚才我们学习了2 的倍数的特征,了解了奇数和偶数的概念,现在我来考考大家,看大家掌握的怎么样:所有同学,学号是奇数的请举手。(停顿,等学生举完手)所有的同学,学号是偶数的请举手。

2、好,同学们对奇数和偶数掌握的还是不错的。下面我们继续做游戏:学号是5 的倍数的同学请举手。

3、同学们想一想,哪些数是5 的倍数?5 的倍数有哪些特征?

4、出示教材第18 页的表,让学生找出1 至100 中的5 的倍数并涂上颜色。提问:涂一涂,你能从表中看出什么规律?(指名板演)

5、观察一下这些数的个位数,你能得出什么结论?

6、让学生做教材第18 页“做一做”的练习,先分别找出2 和5 的倍数。

7、让学生再找一找既是2 倍数又是5 的倍数的数。提问:你是怎么找到的?

8、不错,这两种方法都可以找到10 的倍数。有些同学还发现了既是2 的倍数又是5 的倍数的数一定是10 的倍数。同学们在观察这些是10 的倍数的数,大家能不能总结出10 的倍数的`特征?

四、探究3 的倍数的特征。

1、刚才我们学习了2 和5 的倍数的特征,那么3 的倍数又有哪些特征呢?请同学们先把3 的倍数找出来,在进行小组讨论,看看3 的倍数有什么特征。

2、观察这些数,大家能不能找到3 的倍数的特征?(给学生足够的时间来讨论)

3、用老方法不能得出3 的倍数的特征,怎么办呢?提示:同学们再看看12 这个数,研究一下它的个位和十位上的数字,看看能发现什么?

4、表扬学生的发现,鼓励学生继续探讨:非常棒!同学们在研究一下15、18、21,看看这三个数是不是也符合这个规律。

5、现在大家是不是可以总结出3 的倍数的特征了?(教师同步板书)

6、现在同学们用自己得出的结论做“做一做”第1 题,看看其他数是不是也是这样的。

7、组织学生做“我说你判断”的游戏。

8、让学生自主完成“做一做”第2 题。

五、总结。

组织学生说说这节课学到了哪些知识以及有些什么收获。

作业

1、下列哪些数是2 的倍数,而不是5 的倍数?在对应的括号内画“√”。

8 10 24 120 88 185 ()()()()()()

2、找出下列各数中是3 的倍数的数。

45 76 121 273 690 1234 29 94 302 57 850 20xx

3、写出三个既是3 的倍数又是2 的倍数的数。

4、写出三个是3 的倍数但不是2 和5 的倍数的数。

5、在方框中填一个数,使每个数都是3 的倍数。

8 5 1 34 78 31

板书设计:

2、3、5 的倍数的特征

2和5的倍数的特征教案篇4

设计说明

1.让学生产生探究的兴趣。

兴趣是学好数学的动力源泉。为了使学生产生探究的意识,激发学习兴趣,形成最佳的学习心理状态,我充分利用小学生好奇心强这一心理特点,创设了“猜一猜”的游戏情境:让学生出题,随意说一个数,老师迅速地说出该数是不是3的倍数,以此来调动学生学习的积极性。

2.让学生发现学习的方法。

本设计在教学3的倍数时,先让学生运用已经学过的2和5的倍数的特征的知识进行知识迁移,对3的倍数的特征进行初步的猜想。再由猜想与验证的不一致,激起学生探究新知识的兴趣。接着根据学生提出的探究3的倍数的特征的方法,让学生以小组合作的形式,探究3的倍数的特征。通过这样一个过程,培养学生的推理能力,充分体现学生的主体地位。

课前准备

教师准备 ppt课件 计数器 记录表

学生准备 百数表 计数器教学过程

教学过程

创设情境

师:用5,6,7组成一个没有重复数字的三位数,使这个数是2的倍数。说说什么样的数是2的倍数。

师:能组成既是2的倍数又是5的倍数的数吗?为什么?

师:同学们,我们已经知道要判断一个数是不是2或5的倍数,只需观察这个数的个位即可。那么你们能通过观察发现3的倍数的特征吗?今天我们就一起来探究3的倍数的特征。(板书课题:3的倍数的特征)

设计意图:创设问题情境,既可以巩固已学知识,又可以引导学生积极主动地投入到3的倍数的特征的教学过程中来,有利于学生轻松、愉快地学习新知。

探究新知

1.提问:我们已经知道判断一个数是不是2或5的倍数,只要看这个数的个位即可,那么你们能猜出什么样的数是3的`倍数吗?

(学生可能会说个位上是3,6,9的数是3的倍数)

师:大家同意他的猜想吗?他的猜想到底对不对呢?我们一起来探究一下。

课件出示百数表。

师:在百数表中找出3的倍数。用自己喜欢的方法圈一圈。

师:请同学们观察一下,3的倍数个位上是哪些数?刚才那位同学的猜想正确吗?要判断一个数是不是3的倍数,能不能只看个位?

2.观察百数表中圈出的3的倍数,你们发现了什么?

(1)引导学生先横着看,再竖着看,学生找不到3的倍数的特征。

(2)引导学生斜着看,先看第一斜行的3,12,21。

学生分组讨论这3个数有什么特征。

汇报交流:第一斜行3的倍数各位上的数相加,和是3。

(3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?

设计意图:先让学生从第一斜行开始思考3的倍数的特征,能使教学难点化整为零,易于逐个突破。

3.操作验证。

(1)在计数器上分别拨出几个3的倍数:12,42,45,75,87,看看各用了几颗珠子。

学生以小组为单位,用计数器拨出3的倍数,并填写记录表。

总结:一个数各位上的数的和是3的倍数,这个数就是3的倍数。 (2)思考:观察这些3的倍数,它们十位与个位上的数的和与3有着怎样的关系?学生分组讨论后得出结论。

2和5的倍数的特征教案篇5

教学目标

1.让学生探索3.的倍数的特征,会判断一个数是不是3的倍数。

2.让学生在学习过程中学会运用分析、比较、归纳或猜想、检验等方法,并进一步学会与同学交流。

教学重难点

判断一个数是不是3的倍数。

课前准备

小黑板、学具卡片

教学活动

一、引入新课,激发兴趣

教师在黑板上写出一组数:5、6、14、18、25、27、36、41、90,问学生:谁能判断出哪些数是3的倍数?(这些都是一些简单的数,估计学生通过口算很快就能判断出来)

教师再写出几个数:1540、2856、3075,再问:谁能很快判断出哪些数是3的倍数?当学生出现畏难情绪时,教师说:我能很快地说出这几个数当中,2856和3075都是3的倍数。

谈话:你们会想这是老师预先算好的。你们可以考考老师,不管你报一个什么数,我都能很快地判断出来,你们愿意来试一试吗?

学生报数,教师很快地回答,并把是3的倍数的数板书在黑板上,再让学生用计算器进行验证。

谈话:你们一定在想:老师你有什么窍门吗?有啊!你们想知道吗?让我们一起来探索3的倍数的特征。(板书课题:3的倍数的特征)

二、自主探索。合作学习

1.先让学生猜一猜:3的倍数有什么特征?举例说明。

2.根据学生猜测的结果,讨论:个位上是3、6、9的数是3的倍数吗?

3.当学生得出3的倍数与个位上的数没有关系时,教师引导学生在小组里用计数器拨几个3的倍数,看每次用了几颗算珠?

如:84、51、27、90、123、2856、3075,它们用的算珠颗数分别是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+o+7+5—15。

4.引导学生观察、分析、讨论:用的`算珠的颗数有什么共同点?

:每个数所用算珠的颗数都是3的倍数。

5.提问:这些数所用算珠的颗数跟什么有关系?小组讨论,交流讨论结果。

:一个数是3的倍数,这个数各位上的数的和一定是3的倍数。

6.进一步验证。(1)同桌之间互相报数,验证刚才的结论是否正确。(2)用1、2、6可以写成126,还可以组成哪些三位数?这些三位数是3的倍数吗?小组讨论后得出结论:3的倍数,跟数字的位置没有关系,只跟各位数上的数的和有关系。

7.试一试:如果一个数不是3的倍数,这个数各位上数的和是3的倍数吗?

在小组里举例验证、讨论交流。得出:一个数不是3的倍数,这个数各位上数的和不是3的倍数。归纳:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

三、运用结论。巩固拓展

1.做“想想做做”第1题。

指名口答。提问:你是怎么判断出67不是3的倍数,84是3的倍数的?

2.做“想想做做”第2题。

提问:每一题有没有余数与什么有关?有什么关系?谈话:在没有余数的算式下边画横线,看谁做得快。指名报结果,共同评议。

3.做“想想做做”第3题。

让学生独立填写,再在小组里交流:你能找到几种不同的填法?

4.做“想想做做”第4题。

学生涂完后,指名回答:9的倍数都是3的倍数吗?

5.做“想想做做”第5题。

各自组数,并把组成的数记下来。

指名报答案,全班学生评议。

6.补充题。

提问:你今年几岁?再过几年你的岁数是3的倍数?

四、

2和5的倍数的特征教案篇6

知识与技能:

1、学生会正确判断一个数是否是3的倍数。

过程与方法:

2、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

情感态度价值观:

3、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

教学重、难点:

1、掌握3的倍数的特征。

2、能正确判断一个数是否是3的倍数。

教学过程设计:

一、复习引新

1、用5,6,7三个数字组成一个三位数,使这个数是2的倍数?

说说什么样的数一定是2的倍数,可以摆成5的倍数吗?怎样摆出的数一定是5的倍数呢?

2、引入:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,那么你能从个位上发现3的倍数的特征吗?今天我们一起来研究3的倍数的特征。(揭示课题:3的倍数的特征)

二、探索猜想,初步感知

师:3的倍数有什么特征?

1、学生进行猜想。

(1)个位上是3、6、9的数是3的倍数。

(2)个位上是3、6、9的数不一定是3的倍数,如23、26、29都不是3的倍数。

(3)学生面对所出现的问题进行猜想,教师可根据学生的猜想进行适当的引导。

2、可能出现的问题。

(1)猜测个位上是3、6、9的数是3的倍数。

(2)个位上能被3整除的数且被3整除。

3、探索猜想。

(1)学生用3、4、5三个数字组成是3的倍数的3位数。

(2)学生如果提出345或354的例子,可板书并多加评论作为后面要学的`内容。

(3)在这个过程中学生可能会提出猜想的结论。即个位上是3、6、9的数是3的倍数。

4、验证猜想。

(1)让学生举例子对猜想的结论进行验证。

(2)在这个环节中,学生有可能也会发现以下情况:

①45是3的倍数,但是,个位上的数字是5,不是3、6、9等。

②26个位上的数是6,但它不是3的倍数。

(3)猜想的结论不成立。

(4)让学生对猜想结论不成立的这个问题提出自己的看法。

师:对于一个结论是否成立,只举一个正例是不够的,如举一个反例就可以推翻这个结论,这个结论就不能成立。请同学们在今后的学习中要注意。

三、自主探索,总结3倍数的特征

1、在质疑中引导学生探究3的倍数的特征。

师:请在下表中找出3的倍数,并做上记号。那么多的数,我们怎么找呢?我们要聪明地找,从比较小的数开始找。(师出示100以内数表,每小组各一张,在小组活动后,教师组织学生进行交流汇报,并呈现学生圈出3的倍数的百以内的数表,如下图。)

2、引导观察。

(1)请同学们观察这个表格,你发现3的倍数有什么特征?把你的发现在小组里说一说。(小组交流后,再组织全班交流。)

(2)在教学过程中,教师要巡视,认真倾听学生有什么发现,有什么不懂的地方。

(3)学生可能发现3的倍数个位上的数有1、2、3、4、5、6、7、8、9、0,没有什么特别规律,十位上的数字也没有什么规律。

3、教师引领。

(1)斜着观察你发现了什么?

(2)在学生观察思考的基础上,概括学生的实际情况,提出新的思考问题:观察每个数各个数位上的数与3有什么关系?将每个数的各个数字加起来看一看会怎样?

(3)试着概括出3的倍数特征。

4、总结3的倍数的特征。

一个数各个位上的数字之和如果是3的倍数,那么,这个数一定是3的倍数。否则,这个数就不是3的倍数。

5 、检验结论。

(1)我们从10 0以内的数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?

(2)利用100以内数表来验证。

(3)延伸到三位数或更大的数。如:573、753、999、1236、2244、7863……

(4)学生自己写数并验证,然后小组交流,观察得出的结论是否相同。

四、巩固应用

1、从3、0、4、5这4个数字中,选出两个数字组成1个两位数,分别满足以下条件:

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5的倍数。

(4)同时是2、3和5的倍数。

2、完成教材19页的“做一做”

五、课堂小结:

这节课你有什么收获?

板书设计:

3的倍数的特征

一个数各位上的数的和是3的倍数,这个数就是3的倍数

教学反思:

“3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,我用复习2、5的倍数特征,迁移到3的倍数特征上来,巧妙设疑,激发学生的兴趣,为学习新的知识,奠定了良好的基础。在新知探究这一块的教学我让学生大胆猜测,质疑,让学生在“实验——讨论——验证”中,产生认知的冲突。激发学生探索的兴趣,然后再在“想象——探索”的过程中,培养学生从不同角度去研究问题,用不同方法去解决问题。学生通过大量的表象积累,思维产生了飞跃,自然就概括出结论。整个课堂孩子们在充分地体验着、感悟着、发展着。这是我觉得成功的地方。

2和5的倍数的特征教案篇7

教学目标:

1、知识与技能

理解并熟记3的倍数的特征,能正确判断一个数是不是3的倍数,培养理解力和应用知识的能力。

2、过程与方法

经历自主实践、合作交流探究3的倍数的特征的过程,培养的探究能力和合作意识。

3、情感态度与价值观

感受数学知识探究的条理性,培养严谨的学习态度,体验合作的乐趣。

教学重难点:

?教学重点】

3的倍数特征。

?教学难点】

探究3的倍数特征的过程。教学过程

教学过程:

一、以旧引新,竞赛导入

1、请说出2的倍数的特征、5的'倍数的特征。

2、下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数?

35 158 200 87 65 164 4122

既是2的倍数又是5的倍数的数有什么特征?

3、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?

4、比一比。请学生任意报数,学生用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!

5、设疑导入:你们想知道其中的奥秘吗?这节课就来学习3的倍数的特征。我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)

二、猜想探索,归纳验证

1、大胆猜想:猜一猜3的倍数有什么特征?

(1)交流猜想。(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)

(2)整理认识。只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?

2、观察探索:出示第10页表格。

(1)圈一圈。上表中哪些是3的倍数,把它们圈起来。

(2)议一议。观察3的倍数,你有什么发现?把你的发现与同桌交流一下。(学生交流)

(3)全班交流。横着看圈起的前10个数,个位上的数字有什么规律?十位上的数字呢?判断一个数是不是3的倍数,只看个位行吗?

(4)问题启发:

大家再仔细看一看,3的倍数在表中排列有什么规律?

从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)

个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)

每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)

3、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?

3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

4、验证结论

大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。

(1)尝试验证。(生写数,然后判断、交流、得出结论。)

(2)集体交流。

教师说一个数。如342,学生先用特征判断,再用计算器检验。

一个更大的数。4870599,学生先用特征判断,再用计算器检验。

5、巩固提高

《2和5的倍数的特征教案7篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭