小数乘小数优秀教案7篇
有条理的教案能够帮助教师合理安排教学步骤和时间,确保教学进程的顺利进行,教案可以帮助教师合理安排教学时间和教学资源,确保教学进度的合理性和高效性,以下是尚华范文网小编精心为您推荐的小数乘小数优秀教案7篇,供大家参考。
小数乘小数优秀教案篇1
教学内容
小数的意义
教学目标
1.知识与技能:结合具体的生活情景,使学生体会到生活中存在着大量的小数。
2.过程与方法:通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。
3.情感态度与价值观:通过练习,使学生进一步体会数学与生活的密切联系,提高学数学的兴趣。
重点难点
重点:体会十进制分数与小数的关系,初步理解小数的意义。
难点:能够正确进行十进制分数与小数的互化。
教具准备
课件、正方形纸2张。
教学过程
一、情境导入。
1.师:老师昨天去逛了下超市,买了些东西,但是在付款的时候遇到了问题,我今天把遇到的问题带来了,希望你们能够帮我解决,好吗?
生:好。
2.我们先来看看老师都买了什么?(课件播放常见物品的价格。)
铅笔:元一支圆珠笔:元一支
猪肉:元一斤黄瓜:元一千克
教师:上面这些物品的价格有什么特点?
学生:都不是整元数。(都是小数。)
教师:还记得小数的读法吗?谁能读出上面的小数?读小数时需要注意什么?
学生依次读出:零点一、一点一一、九点五、五点九六。
师:大家知道这些小数是几位小数吗?
生:......
2.一些商品的标价用元做单位时可以用小数表示,那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?
生:身高体重跳高跳远
小数在我们的生活中应用非常广泛,三年级我们已经学过小数的认识,那么这节课我们一起探究小数的意义。
板书:小数的意义
二、自主探究。
1.一位小数的意义
a.那么多的小数,我们今天就从开始入手研究。
b.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说表示什么意思?
学习单元角米分米网格图
c.生反馈表示什么意思。
d.思考:我们选用的图都不一样,为什么都可以表示?
你还能在图中找到其他小数吗?他们表示什么意思?
学生交流反馈。
学生:1元=10角,元就是把1元平均分成10份,它表示其中的一份,所以1元的也可以写成元。
生2:1米=10分米,米就是把1元平均分成10份,它表示其中的一份,所以1米的也可以写成米。
生:......
2.两位小数的意义
师:同学们真了不起,都善于思考问题,勇于探究,你们又是什么意思呢?
a.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说表示什么意思?
学习单元分米厘米网格图
b.生反馈表示什么意思。
c.思考:你还能在图中找到其他小数吗?他们表示什么意思?
学生交流反馈。
学生:1元=10分,元就是把1元平均分成100份,它表示其中的一份,所以1元的也可以写成元。
生2:1米=100米,米就是把1米平均分成100份,它表示其中的一份,所以1米的也可以写成元。
生:......
3.三位小数的意义
我们还可以把“1”平均分成1000份,其中的一份是(),也可以表示为();其中的59份是();也可以表示为()
小数我们写的完吗?其实呀,小数的位数越多就分的越细。
大家刚刚还记得老师去超市买了什么吗?你能说说他们表示什么意思吗?
三、巩固练习
教师:可以表示成分数吗?可以表示成小数吗?
学生:分别是和。
教师:下面我们以小组为单位,来进行分数小数互化游戏。(出示课件)
同学们在小组内进行游戏交流,教师巡视指导。
四、探究结果报告。
教师:通过刚才游戏,你们发现了什么?(出示课件)
师生共同归纳:分母是10、100、1000……的分数都可以用小数表示,小数的计数单位是十分之一、百分之一、千分之一……分别写作、、……
1.像、这些小数叫一位小数。(分母是10的分数,可以写成一位小数,表示十分之几。)
2.像、这些小数叫两位小数。(分母是100的分数,可以写成两位小数,表示百分之几。)
3.像、25这些小数叫三位小数。(分母是1000的分数,可以写成三位小数,表示千分之几。)
四、教师小结。
小数中,每相邻两个计数单位间的进率都是10。
五、课外拓展。
分享最美数字
小数乘小数优秀教案篇2
教学目标:
(1)理解小数乘以整数的意义,掌握小数乘以整数的计算法则,正确地进行计算。
(2)通过运用迁移的方法学会新知识,培养类推的能力。
(3)培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。
重点:
(1)理解小数乘以整数的意义和计算法则。
(2)熟练掌握小数乘以整数的计算方法,能够正确地进行计算。
难点:
理解计算法则的算理。
教学过程:
一、 复习辅垫
1.读题列式,并说一说各算式所表示的意义
4个13是多少? 18个20是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算。)
2.出示课件1
提问:通过刚才的计算和比较,你发现了什么规律?(用一句话表示)
二、 设疑引喻
出示课件2
板书课题"小数乘以整数"
三、 指导探索
1.出示图片1
2.组织讨论:
(1)用加法怎样列式?用乘法怎样列式?
(2)13.5×5表示的意义是什么?
(3)你觉得哪个算式比较简便?
(4)小数乘以整数的意义与整数乘法的意义有什么联系?
3.提问:小数乘以整数该怎样计算呢?
(如果学生有困难,教师可提示:①能不能把小数乘法转化成整数乘法呢?②能不能用前面复习中得到的规律来解决呢?)
组织学生小组合作学习:互相交流做法,交流这样做的依据。
4.出示课件3 提示:为什么要把325缩小10倍呢?
5.请学生看书学习今天的内容第1页,觉得重要的地方画下来。
四、质疑小结
1.今天我们都学会了哪些知识?请同学概括一下。(培养学生概括能力和语言表达能力)
2.提问:计算13.5×5时先算65×5,为什么算出的结果675还要缩小10倍呢?
3.你对今天学习的内容还有什么问题?(教师和学生共同答疑)
五、反馈调节
1.完成p4第1题 注意学生叙述意义时的不同说法
2.完成第1页做一做。
集体订正。鼓励学生能勇敢地说一说自己错在哪儿?教师注意行间巡视,发现学生的问题及时调节。
3.完成第4页第2题。
集体订正。
提问:观察上面的习题积的小数位数与被乘数的小数位数有什么关系?
4.p4第4题:
由学生独立完成后集体订正。
5.根据149×23=3427填结果。
14.9×23=( )
1.49×23=( )
149×0.23=( )
149×2.3=( )
( )×( )=3.427
板书设计
教学后记:
小数乘小数优秀教案篇3
教学内容:
人教版小学数学教材五年级上册第16页例9,练习四第6~9题。
教学目标:
1.经历分段计费问题的解决过程,自主探究分段计费问题的数量关系,能运用分段计算的方法正确解答这类实际问题,进一步提升解决问题的能力。
2.在解决问题的过程中,学会用摘录的方法收集和整理信息,能从不同的角度分析和解决问题。
3.通过回顾与反思,积累解决问题的活动经验,初步体会函数思想。
教学重点:
运用分段计算的方法正确解答分段计费的实际问题。
教学难点:
探究分段计费问题的数量关系,初步体会函数思想。
教学准备:
将例题与相关习题制成ppt课件。
教学过程:
一、联系生活,提出问题
1. 同学们,你们都乘坐过出租车吧!你知道出租车是怎样收费的吗?(ppt课件演示。)
2. 出租车的收费标准是采用分段计费的,今天这节课我们就一起来探究、解决分段计费的实际问题。
3. 板书课题:解决问题(2)。
?设计意图】引导学生从自己熟悉的日常生活中发现、提炼具体的数学问题,使学生感受到数学与现实生活的密切联系,体会到数学广泛应用于我们日常生活的方方面面。
二、引导探究,解决问题
(一)阅读与理解
1. 呈现情境,明确问题。
(1)出示例9的问题情境。(ppt课件演示,暂不出示收费标准。)
(2)提问:这一情境中要我们解决的问题是什么?解决这个问题还需要知道什么信息?(出租车的收费标准。)
(3)出示收费标准(ppt课件演示)。
2. 读懂图文,摘录信息。(教师逐步板书或ppt课件适时演示。)
(1)收费标准:
3 km以内: 7元;
超过3 km: 每千米1.5元(不足1 km按1 km计算)。
(2)行驶里程:6.3 km。
3. 集体交流,理解标准。(ppt课件突出显示。)
(1)3 km以内7元是什么意思?(出租车从起步到行驶3 km里程,应付的车费都是7元。)
(2)你为什么认为3 km以内7元包括3 km呢?(因为超过3 km,每千米就要按1.5元收费。)
(3)超过3 km后就要按每千米1.5元的标准收费,并且不足1 km按1 km计算。这里不足1 km按1 km计算又是什么意思呢?你能举例说明吗?
(4)问题中行驶里程是6.3 km,根据收费标准,应按多少千米收费呢?(用进一法取整数,按7 km收费。)
4. 教师归纳,概括要点。(ppt课件演示。)
(1)问题中的收费标准是分两段计费的,3 km以内是一个收费标准,为一段;超过3 km又是一个收费标准,又为一段。
(2)超过3 km部分,不足1 km要按1 km计算,也就是要用进一法取整千米数。
?设计意图】解决分段计费问题的关键是理解题意,尤其是理解计费标准。为了帮助学生理解问题中的收费标准,教师采用条件摘录的方式收集信息,引导学生逐条逐句地解释含义,并结合具体数据(学生的举例的和题中的6.3 km)帮助学生切实理解,在此基础上教师再对收费标准的两个要点进行明确的归纳和概括,既促使学生养成认真审题的良好学习习惯,又有效地突破了分段计费问题的教学关键和难点。
(二)分析与解答
1. 启发学生用自己的方法尝试解答。
(1)教师启发引导:我们已经理解了题意,也理解了这个问题中的收费标准是分两段计费的,那么同学们能不能尝试用自己的方法进行解答?
(2)学生尝试解答。
预设一:7+1.54=7+6=13(元);
预设二:1.57=10.5(元),7-1.53=2.5(元),10.5+2.5=13(元)。
2. 组织、引导学生讨论、交流不同的解答方法。(ppt课件适时演示解答过程。)
(1)预设一(分段计算):
生:我是分两段计算的,前面3 km为一段,应付车费7元;后面4 km为一段,每千米1.5元,应付车费是1.54=6(元);再把两段应付的车费合起来就是13元。
师(质疑):后面一段里程为什么是4 km,计算后面一段车费为什么用1.54?
生:根据收费标准,6.3 km按7 km计算,前面一段是3 km,后面一段就是4 km,所以计算后面一段的车费就应该用1.54。
(2)预设二(先假设再调整):
生:我是用先假设再调整的方法解答的,先假设总里程7 km都按每千米1.5元计算,结果是10.5元;而这样前面3 km的费用少算了7-1.53=2.5(元);再来调整,用10.5元加上少算的2.5元,所以应付车费13元。
?学情预设】根据学生已有的知识和经验,大多数学生容易想到用第一种解答方法解答。但第二种解答方法学生不容易想到,因此,在组织学生讨论、交流时,教师可以根据学生的具体情况进行引导。如:如果把前面一段3 km也按每千米1.5元收费,车费是少算了还是多算了?
3. 引导学生积累解决分段计费实际问题的经验。
(1)变换例题条件:如果行驶里程是8.4 km,你还能用刚才的方法计算出车费吗?如果行驶里程是9.8 km呢?(ppt课件演示。)
(2)学生自主解答,教师巡视。
(3)集体交流订正。(教师板书或ppt课件呈现解答过程。)
?设计意图】沿用例题情境,变换问题条件,让学生在熟悉的情境中解决变换后的问题,不仅有利于学生进一步体会解决分段计费问题的思路和方法,也有利于学生在对比中发现解决分段计费问题的规律,积累解决实际问题的经验,促进学生观察分析、归纳概括能力的发展。
(三)回顾与反思
1. 回顾。
(1)我们刚才解决的实际问题都具有什么特点?
(2)这些问题我们是怎样解决的?
2. 反思用分段计算解决分段计费问题的过程与方法。
(1)呈现例题及变式题的解答过程。(ppt课件呈现。)
(2)提问:观察、比较上面的解答过程,你发现了什么规律?
(3)揭示规律(ppt课件演示):应付车费=7+1.5(总里程-3)。
(4)质疑:为什么总是用7元去加后段里程的车费?(引导学生说出:根据收费标准,前段里程3 km的车费7元是固定不变的。所以,只需要计算出后段里程的车费,再和7元相加,就求出了应付的车费。)
3. 反思用先假设再调整方法解决分段计费问题的过程与方法。
(1)呈现例题及变式题的解答过程。(ppt课件呈现。)
(2)提问:观察、比较上面的解答过程,你发现了什么规律?
(3)揭示规律(ppt课件演示):应付车费=1.5总里程+2.5。
(4)质疑:为什么总是用假设车费再加上2.5元?(引导学生说出:如果把所有里程都假设为每千米1.5元,那么前段里程3 km的车费就只算了4.5元,少算了2.5元。所以,算出假设车费后,再加上2.5元才是应付的车费。)
4. 教师归纳。
(1)通过同学们刚才的讨论和交流,我们发现了解决分段计费问题的规律,找到了解决分段计费问题的两种一般方法。(ppt课件演示。)
(2)在解决问题时,我们都应该像这样对解答的过程与方法进行回顾与反思,从中发现所蕴含的规律,找到解决问题的一般方法,提高我们解决问题的能力。
5. 拓展(制作、应用出租车价格表)。
(1)这节课,我们用两种方法解决了乘出租车付费的实际问题。其实,我们还可以用制作价格表的方法来解决乘出租车付费的问题。
(2)你能完成下面的出租车价格表吗? (ppt课件出示价格表。)
(3)学生完成出租车价格表。(教材第16页。)
(4)思考:观察表中的数据,你发现行驶里程与出租车费之间有什么关系?它们之间的变化情况又是怎样的?(ppt课件呈现。)
(5)应用出租车价格表解决问题。(ppt课件呈现。)
①妈妈坐出租车行驶了7.2 km,应付车费多少钱?
②王叔叔乘坐出租车,下车后付了16元车费,他至少乘坐了多少千米?至多呢?
?设计意图】通过回顾与反思,引导学生分别反思用分段计算和先假设再调整的方法解决分段计费问题的过程,帮助学生建立解决这类问题的两种一般方法。通过引导学生完成出租车价格表,并观察、思考表中行驶里程与出租车费之间的关系及变化情况,感受分段计费的特点和规律,让学生初步体会函数思想。
三、实践应用,内化提升
(一)基本应用
练习四第7题。
(1)理解题意:你怎样理解合影价格表中的信息?问题一共需付多少钱是分哪两段计费?
(2)学生独立完成。
(3)全班集体交流:你是怎样解决这个问题的?
(二)拓展应用
1. 练习四第8题。
(1)理解题意:这道题是实际生活中的一个什么问题?它的收费标准是怎样的?
(2)学生独立完成。
(3)全班集体交流:通话时间8分29秒应该按几分钟计算?你是怎样解答的?
2. 练习四第9题。
(1)理解题意:这道题里有几种收费标准?解答这道题除了考虑分段计费外,还要区分什么?
(2)学生独立完成。
(3)全班集体交流:你是怎样解答第(1)问的?第(2)问呢?
(4)你还能提出其他数学问题并解答吗?
?设计意图】直接选用教材提供的练习,让学生充分感受分段计费问题在实际生活中的广泛应用。练习根据问题的复杂程度分了基本应用和拓展应用两个层次,在练习中特别注意引导学生理解题意,理解问题中的计费标准,这既是解决这类问题的基础,又是解决这类问题的关键。解答时放手让学生自己独立完成,并通过交流让学生体会解决问题的多种方法,增强学生分析问题、解决问题的能力。
四、全课总结,畅谈收获
1. 说一说,这节课的学习你有什么收获?
2. 本节课是本单元的最后一节课,本单元的学习你有什么收获?
五、作业练习
1. 课堂作业:练习四第6题。
2. 家庭作业。
(1)回顾本单元的学习内容,你有哪些收获?
(2)学习中遇到了哪些问题?你是怎样解决的?
小数乘小数优秀教案篇4
教学目标:
1、使学生初步掌握小数减法的计算方法。
2、通过对比小数减法与整数减法的相同点以加深学生对小数减法的理解。
重点:掌握小数的减法计算方法。
教学过程:
一、复习导入新课。
1、复习小数加法。
0.37 + 0.58 10.9 + 7.8
2、重点复习小数加法的计算法则。
二、新课:
1、组织学生自学p96页例4。从例4中你学到了什么?从1.2-0.6=0.6的竖式计算中你发现了什么秘密?它与小数加法比较有什么不同的地方?你能说一说小数减法的计算方法吗?(留时间让学生议论。)
2、结小数的减法的计算方法。(略)
3、设计情景,提出问题,巩固小数减法的计算。
出数据信息:
尺子铅笔作文本图画本笔盒彩色笔
0.80元0.50元1.20元0.60元9.67元12.40元
师:根据以上的商品价格,你能提出什么问题,并解决它。
4、回顾对比:
小数减法计算与整数减法计算有什么不同?
小数减法计算与小数加法计算有什么相同点和什么不同点?
三、小组活动,巩固计算,提高计算能力。
说明:1、两人一组。每人说出一个小数。两人同时写竖式计算,比一比谁算得又对又快。在规定的时间内,计算题目多者为胜。
四、练习作业。
1、完成课本p97页第1、2题
2、课后实践作业:p97页第3题。
第五课时
小数加、减法混合练习
教学内容:课本p97~~p98第4~~6题。
教学目的:
1、使学生进一步会计算比较简单的小数加、减法。
2、使学生能形成比较正确、熟练的'计算技能。
教学重点:熟练小数加、减法混合计算的技能技巧。
教学过程:
一、口算练习。
4.6+5.4+0.8+0.7–0.4–0.6
老师小结口算情况。
二、练习笔算小数加、减法。
1、完成p97第4题和p98第6题。
2、评讲时突出两个带小数相减,且小数部分只有一位,十分位上的数不够减,要从整数部分的个位退一的计算方法,作为重点评讲。(学生如出现错误,结合评讲)
三、练习有关小数加减法的文字题。
1、讨论:以下两题应该怎样列式计算。
(1)0.95比0.58多多少?
(2)已知甲数是7.4,它比乙数多1.3,乙数是几?
学生列式计算后,老师进行简单小结:第(1)小题是比较两数大小,相差多少?可用减法计算,列式计算0.95-0.58=0.37;第(2)小题已知甲数是7.4,它比乙数多1.3,乙数是多少?(也就是乙数比甲数少1.3,求比一个数少几的数是多少?)用减法计算:即7.4–1.3=6.1,做这类文字题一定要弄清楚谁与谁比,谁大谁小,求大数还是求小数,要分析题中两数关系,然后选择正确的算法进行解答。
四、练习有关小数加减法的应用题。(根据学生情况适当加深练习,补充题略)
小数乘小数优秀教案篇5
教学目标:
1.结合具体内容认识小数,知道以元为单位、以米为单位的小数的实际含义。
2.知道十分之几可以用一位小数表示,百分之几可以用两位小数表示。
3.能识别小数,会读写小数。
教学重点:
1、能识别小数,正确得读写小数。
2、知道十分之几用一位小数表示;百分之几用两位小数表示;
教学难点:
知道以元为单位,以米为单位的小数的实际含义。
教学过程:
一、创设情景
1、谈话导入
2、看学习用品价格并调整价格
(1) 课件出示:书包4500元 油笔320元 铅笔40元 橡皮25元师:你觉得这些商品的价格合适吗?不改变原有数字,你能试着调整价格吗?
(2)汇报:
板书:45.00、3.20 、0.40、 0.25
(3)整数与小数的比较
师:这些数与以前学过的整数有什么不同呢?你发现了吗?
3、揭示小数并板书课题
二、探究新知
(一)小数的读写
1、认识小数点
师:分数中间的那条线我们叫它分数线,那么小数中间的小数点你知道叫什么吗?
板书:小数点
2、小数的读法
(1)同学试读上面的小数
(2)读小数时你有什么发现?
揭示读法
举例:18.18读作:十八点一八
(3)练习开火车读小数
3、小数的写法
(1) 生试着说说如何写小数
举例:十二点七五写作:12.75(强调小数点的书写位置)
(2) 练习写小数
(二)理解小数的实际含义
1、 以元为单位的小数意义
(1)出示主题图价格表
(2)试填价格表
(3)揭示小数在价格中的意义(小数点每一位都表示什么)
(4)找找书上文具盒里的小数
2、以米为单位的小数意义
(1) 认识一位小数
师:你知道哪些长度单位?
师:一米有多长?一分米呢?它们有怎样的关系?
课件出示:一米长的线段
师:把一米平均分成10份,每份是多少?用分数表示是几分之几米?
师:写成小数是0.1米.小数点右边第一位表示什么?(板书:分米)
师:3分米表示几分之几米用小数表示是多少?
练习:0.8米是( )分米. 0.7米是( )分米 5分米用小数表示是( )米.
同学互说
(2) 认识两位小数
师:一厘米有多长?米和厘米有怎样的.关系?
师:把一米平均分成100份,每份是多少?用分数表示是几分之几米?
师:写成小数是多少呢?(0.01米)小数点右边第二位表示什么?(厘米)
师:3厘米呢?18厘米呢?
练习:33厘米是( )米?0.72米是( )厘米?
(3) 比较这两组小数有什么区别?
(4 )说自身的身高如何用小数表示.
(5) 揭示小数在长度单位中的意义
举例:1米31厘米=1.31米
(三)质疑
三、巩固练习
1、 想一想,说一说
(1) 老师这个月的手机费是85.50元,就是( )元( )角.
(2) 姚明的身高是226厘米,写成小数是( )米.
(3) 小明买了一盒牛奶,用了两个一元和一个5分,这盒牛奶( )元.
2、猜谜语
(1)长颈鹿高度可达5.8米.
(2) 丹顶鹤体长1米20厘米写成小数是多少/
(3) 大象高度可达3.5米,.重可达5.25吨.
师;看到这些可爱的动物你想说些什么?
3、游戏:蜜蜂采蜜
4、拓展:用2、6、8加小数点能组成多少个小数?
四、课堂小结,浅谈收获
小数乘小数优秀教案篇6
?教学内容】 五年级上册第28页至30页例1和例2及相应的“试一试”和“练一练”,练习五1-5题。
【教学目标】
1.在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。
2.在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。
3.培养良好的学习习惯,提高学生的探究、归纳比较、抽象概括的能力。
?教学重、难点】理解小数的意义。
【教学过程】
一、交流信息,引入课题
课前我们收集了一些关于小数的资料,老师选择了一些,谁愿意给大家介绍一下?
(1)一块橡皮0.3元;一张信封0.05元;一本练习本0.48元。
(2)一枚1分硬币的厚度大约是0.001米。
(3)老师用的签字笔笔芯是0.38毫米的。
(4)艾兰德 “维生素c含片”净含量:0.65克×120片。
(5)钱嘉容的家到学校大约有3.9千米,她的爸爸身高1.82米。
像0.3这样的一位小数三年级时我们已经认识,这些小数和它们有什么不一样?会读吗?只读小数,谁来读一读。
你们觉得读小数时需要提醒大家注意什么?(小数点前面的数和我们学过的整数一样读,小数点后面的数只要依次一个一个地读。)
?设计意图:学生的知识起点是三下时对一位小数的直观认识和刻画,这是教学的起点,也是思维的动点。通过找身边的小数,引发学生对小数的认识,激起进一步学习和探究的热情。教材为什么三下就安排初步认识小数,因为生活中小数随处可见,孩子不陌生,早些了解也便于孩子在生活中交流。孩子对小数不陌生,因此两位小数、三位小数虽课本没安排学习,但孩子的读法早已在生活中习得,因此小数的读写方法不作为本节课的教学重点,只课之初始阶段稍做提醒,指出读法中的注意点,即尊重孩子的实际情况。】
这节课我们将继续学习小数的意义。(板书课题:小数的意义)
二、教学例1,初步感知
1、出示例1。我们先来看第一条信息。
这些小数表示物品的单价。
如果你到商店去买这些物品,该怎样付钱呢?(课件出示: 3角 5分 48分)
谈话: 这里的0.3元用分数可以怎么表示?你是怎么想的?(板书:0.3元)
小结:1元=10角,3角是1元的3/10,可以写成0.3元。(板书:3/10元 0.3元)
2、初步认识两位小数。
你能仿照(0.3元)这样的思路说说0.05元和0.48元的意思吗?先独立想想,再同桌交流。(如果学生感到困难,提示:1元是多少分;1分是1元的几分之几;那5分呢?48分呢?可以怎样想?)
0.05元,谁来说说你是怎么想的?(同桌互相说说)
1元=100分,5分是1元的5100 ,可以写成0.05元;
0.48元谁来说?
1元=100分,48分是1元的48100 ,可以写成0.48元;
板书:5100 元 0.05元 48100 元 0.48元
3、看看这些小数,为什么(0.05)这里要写0?(因为是5分钱,1元=100分)几分钱用小数表示就是——,这里(0.48)为什么没有0?几角几分用小数表示就是——
?设计意图:小数的意义较为抽象,学生掌握起来有一定困难。但以元为单位的小数所表示的金额是学生在生活中已经初步认识了的,比较熟悉,这些经验能支持学生理解小数的意义,从而实现感性认识到理性认识的飞跃。在初步感知阶段,利用“0.3元该怎么付?”学生把元转化成角,进而追问0.3元用分数可以怎么表示?得出3角是1元的3/10,可以写成0.3元。充分运用学生已有的知识经验和生活经验,通过类比,迁移,为下面学习两位小数、三位小数等作好充分的准备。】
三、教学例2,概括意义
(一)进一步理解两位小数的意义。
1、刚才我们借助圆角分间的关系认识小数,其实还可以借助其它一些事物,这是一把米尺,把1米平均分成100份,每份长多少(1厘米)?为了方便看得清楚,我们截取一部分将它放大。想一想, 1厘米是1米的几分之一?用小数怎么表示?
投影:1米=100厘米,1厘米是1米的1/100,可以写成0.01米。
谁能这样完整的说说。(板书:1厘米 1/100米 0.01米)
2、4厘米和9厘米写成以“米”作单位的分数和小数各是多少?拿出练习纸,在第一题处填一填。和屏幕校对。谁来说说(4厘米)你是怎么想的?0.09米有多长?
(二)自主探究三位小数的意义。
1、出示第一屏,收集的小数信息:请同学们看第2条信息,读——0.001米?你认为它比要0.01米的长度——短!究竟有多长?
2、老师将米尺再截短再放大,现在你能在米尺上指出0.001米吗,并告诉大家你是怎样想。(能仿照刚才的思路说说想法)
谁再来说说0.001米的意思?板书:11000 米 0.001米
你能说一个毫米数,让大家像这样来说说吗?板书两个
3、练习纸上找到材料2完成填空。(课件出示,直接校对)
这些用米作单位的三位小数都表示1米的——千分之几。
(三)观察发现,概括意义
1、一起来观察板书,先竖着看看,再横着看,仔细观察这一行分数和对应的小数,你有什么发现?想一想四人小组交流。汇报
竖着看,这3个数量都是——相等的!下面两个数量的单位都是——相同的!这说明分数、小数之间有着密切的联系!(根据学生交流情况可适当擦去写板书,只留下分数、小数,便于观察、比较、抽象概括意义。)
从分数往小数看,什么样的分数可以直接写成小数呢?
看看下面的小数,可以分成几类?
从小数往分数看,一位小数、两位小数、三位小数各表示什么?还能往下想吗?四位小数呢?(表示万分之几)能想的完吗?
引导出示:分母是10、100、1000……的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
指出:这就是小数的意义,引导学生完整的看一看 。
(四)回到第一屏学生收集的信息,解释3、4条信息中小数的意义。
?设计意图:例2的教学分成三段进行。第一段继续教学两位小数,以“米”为单位改写成小数,从中体会不仅是“元”为单位的百分之几可以写成两位小数,其他百分之几的分数都可以写成两位小数。第二段教学三位小数,让学生把学习两位小数的经验迁移到三位小数上。数学学习的本质在于数学思维,第三段初步概括小数的意义,对一位、两位、三位……小数意义的具体分析后,抓住展示和交流这一时机,通过清晰直观的板书,从上往下又从左往右地引导学生进行概括、归纳、推理,最后达成了对小数意义的系统认识和理解。】
小数乘小数优秀教案篇7
一、教学内容:
认识小数(第88-89页)
二、教学目标
知识目标:让学生从生活中感知小数,认识小数的意义、读法和写法。
情感目标:
1、让学生感知生活中处处有数学从而激发学生的学习兴趣。
2、让学生通过学习,培养他们的探索意识和合作精神。
三、教学重、难点
重点:小数的意义、读、写方法。
难点:小数的产生过程。
四、教具:课件
五、教学设计
一、知识铺垫:抢答:
1元=()角1元=()分
1米=()分米1米=()厘米
二、新课教学:
(一)、创设生活情境、激趣导入新课。
1、课件出示“麦当劳”的一些食品引入小数。
2、引入课题“认识小数”。
(二)合作探究、认识小数。
1、认识以元为单位的小数的实际意义。
①小数的特征
②小数读法
③小数以元为单位的意义
2、找生活中的小数。
3、教学例??
认识小数以米为单位的实际意义及小数的写法。
(1)、课件出示”把1米平均分成10份,每份是()分米。
用米作单位,用分数表示是1/10米,也可以用小数表示是(0.1)米”
板书:1分米=1/10米=0.1米(并教学小数的写法)
提问:3分米呢?7分米呢?
(2)、”把1米平均分成100份,每份是()厘米。
用米作单位用分数表示是/米,也可以用小数表示是(0.01)米”
板书:1厘米=1/100米=0.01米
对比:1/10分母是10,小数是0.1
1/100分母是100,小数是0.01
(3)、让学生独立填空。
3厘米、18厘米怎么样用分数和小数表示
(4)、同位合作探索填空。
王东身高1米30厘米写成小数是()米
提问:你是怎么想的.?
小结:以米为单位的小数,整数部分表示什么?(米)
小数部分第一位表示什么?(分米),第二位表示什么?(厘米)
三、深化新知、巩固练习
1、第89页做一做
先让学生在书上填空,再投影评定。
2、第91页,第1题(1)、(2)小题
先让学生在书上填空,再投影评定并提问其中的1小题是怎样想的。
3、游戏:“猜猜我是谁?”(第91页第2题)
4、“小小法官”判断题。(另编4小题)
四、总结
这节课你学会了什么?把你学会的和同桌说说。